

In-Can Incineration And Vitrification Process: Glass Formulation And Glass Melt/Liquid Metal Interactions

> Julia Agullo*, Annabelle Laplace, Damien Perret, Isabelle Giboire, Arnaud Quintas, Patrice Charvin, Stéphane Lemonnier

> > CEA, DES, ISEC, DPME, Univ Montpellier, Marcoule, France *julia,agullo@cea.fr

Context and objectives

Process for Incineration and Vitrification In-Can (PIVIC, 2013-2023) for the treatment and conditioning of solid technological wastes

- · Extremely wide range of wastes in nature and composition
- Organic: PVC, PE, neoprene... from gloves, glovebox windows, wipes
- Minerals: aluminosilicates and borosilicates from filters, prefilters, glass fibers
- Metals: aluminum and stainless steel from electric devices, defective mechanical products, tools
- Maximize waste loading (in particular Al incorporation)
- Highly reducing environment imposed to the glass melt
- No boron addition to the glass composition (alkaline borates volatilization + neutronic counting of containers)

⇒ Study of NCAS (Na₂O-CaO-Al₂O₃-SiO₂) system and interactions between glass melt and liquid metal at high temperature (1400°C)

Oxides solubilization

Al oxidation

Glass formulation and rheological studies

thite Na₂O/(CaAl₂Si₂O₂+Na₂O) (g/g)

in glass

Observations from ICP and SEM/EDS analyses:

- Na volatilization (20_{rel.}%)
- Cr₂O₃, MnO, Cu₂O and Fe₂O₃ 7
- SiO₂ \(\mathbf{\si}\) and Al₂O₃ \(\mathbf{7}\)
- Si⁰ formation

Methodology

Main objectives

- 1. Define one single glass frit (vitrification adjuvant) to treat all PIVIC solid technological waste
- 2. Maximize Al₂O₃ incorporation into the glass / glass-ceramics
- 3. Prevent any potential risk of glass melt "freezing" at 1400°C

Composition domain for PIVIC glass formulation studies

1. Thermodynamic modeling of the NCAS system CaO wt. ratio (normalized to CAS ternary) (\mathbf{x}) CaAl₂Si₂O₂ - Na₂O FactSage 8.1 + Ftoxid database 3. Rheology of crystallized glass melt 1 transition T(°C) (°C) NO RISK

Conclusions

- Accurate knowledge of glass melt/liquid metal interactions, actinides distribution and NCAS glass melt rheology Definition of one single glass frit to treat all PIVIC solid technological waste
- Maximization of Al incorporation (~55wt% Al₂O₃ in the final glass-ceramics)

Acknowledgements

Time (s)

Partnership between Orano, CEA and Andra for PIVIC project Financial support from French government program "Programme d'Investissements d'Avenir"