

3rd Summer School on nuclear and industrial glasses for energy transition

Modeling Approaches

Short introduction

Jean-Marc DELAYE

CEA Marcoule, UNIVERSITÉ DE MONTPELLIER, 30207 Bagnols-sur-Cèze Cedex, France

What are the needs in glass alteration modeling?

NEEDS	NUMERICAL METHODS	NUMERICAL METHODS	LIMITS		
Understanding the elementary mechanisms (hydrolysis, (inter)diffusion, structural relaxation, solvation of ions, adsorption, pH effect,) Determining characteristic quantities (hydrolysis energies,	Atomistic scale (ab initio, ReaxFF, classical molecular dynamics) Presentation by J. Du Atomistic scale (ab initio, ReaxFF, classical molecular dynamics)	Atomistic scale (ab initio, ReaxFF, classical molecular dynamics)	Size of the systems, duration of the calculations, availability and precision of the force fields (currently no ReaxFF or classical force fields for hydrated borosilicate glasses but the dry ISG glass can be simulated)		
diffusion coefficients, surface energies,) Reproducing the global alteration behavior , the ripening of the gel (and extrapolate for the long- term)	More macroscopic approach at the atomic scale (<u>Monte Carlo</u>), or a continuous scale (<u>Phase Field</u> <u>method</u> , <u>GRAAL</u>)	More macroscopic approach at the atomic scale (Monte Carlo), or a continuous scale (Phase Field method, GRAAL) Presentation by P. Frugier	Physics is simplified – Need to validate the basic assumptions - Need to ensure the robustness of long-term extrapolation		
My 2 nd presentation	Work conducted by T. Boutin / A. Cartalade				
	Four focuses on hot topics: New classical potentials				

+ Global Descriptors + Machine Learning

Presentation by T. Charpentier

cea

Four focuses on hot topics: New classical potentials ReaxFF Refined Monte Carlo approach Machine Learning

A new tool for classical MD calculations

Coulombic potentials

$$U_{q_{i}-q_{j}}(r_{ij}) = \frac{q_{i}q_{j}}{r_{ij}} erfc\left(\frac{r_{ij}}{\beta}\right)$$
$$U_{q_{di}-q_{j}}(r_{ij}) = \frac{q_{di}q_{j}}{r_{ij}} erf\left(\frac{r_{ij}}{\sqrt{2}\xi_{ij}}\right) erfc\left(\frac{r_{ij}}{\beta}\right)$$
$$U_{q_{i}-q_{dj}}(r_{ij}) = \frac{q_{i}q_{dj}}{r_{ij}} erf\left(\frac{r_{ij}}{\sqrt{2}\xi_{ij}}\right) erfc\left(\frac{r_{ij}}{\beta}\right)$$
$$U_{q_{di}-q_{dj}}(r_{ij}) = \frac{q_{di}q_{dj}}{r_{ij}} erf\left(\frac{r_{ij}}{\sqrt{2}\xi_{ij}}\right) erfc\left(\frac{r_{ij}}{\beta}\right)$$

Repulsive and dispersive terms Three body terms

$$egin{aligned} U_{ij}^{rep}\left(r_{ij}
ight) &= A_{ij}^{rep} \; rac{2*arepsilon_{ij}^r}{r_{ij}} erfcigg(rac{r_{ij}}{2*arepsilon_{ij}^r}igg) \ U_{ij}^{disp}\left(r_{ij}
ight) &= -rac{C_{ij}^6}{r_{ij}^6} \ U_{ijk}^{thr} &= \lambda_{ijk}expigg(rac{\gamma_{ij}}{r_{ij}-r_{ij}^0}+rac{\gamma_{ik}}{r_{ik}-r_{ik}^0}igg)igg(cos heta_{ijk}-cos heta_{ij}^0) \end{aligned}$$

A few examples of usage

> A silica – H₂O interface is built (T. Mahadevan, JPCC, 122 (2018) 9875)

> The water penetration is studied

Water molecules and protons can penetrate within the bulk near the surface (it is not just a surface reaction)

A few examples of usage

> $A SiO_2 - AI_2O_3 - CaO - H_2O$ interface is built

(K. Damodaran, Acta Materialia 225 (2022) 117478)

Double along z-axis

 Potential Mean Force method is used to estimate the hydrolysis energies

Glass name	SiO ₂	Al ₂ O ₃	CaO	
Pure silica	100	-	-	(wt%)
Aluminosilicate	63.7	23.8	12.5	

- Al is the easiest element to dissociate
- Si hydrolysis energy in SiO₂ < Si hydrolysis energy in SiO₂-Al₂O₃-CaO (Strengthening effect of Al)

ReaxFF is increasingly being employed for simulating glass corrosion

- ReaxFF : Reactive Force Field
 - ✤ Many different energetical terms are considered

$$E_{system} = E_{bond} + E_{over} + E_{under} + E_{val} + E_{pen} + E_{tors} + E_{conj} + E_{vdWaals} + E_{Coulomb}$$
$$BO_{ij} = \exp\left[p_{bo,1}\left(\frac{r_{ij}}{r_0}\right)^{p_{bo,2}}\right] + \exp\left[p_{bo,3}\left(\frac{r_{ij}}{r_0}\right)^{p_{bo,4}}\right] + \exp\left[p_{bo,5}\left(\frac{r_{ij}}{r_0}\right)^{p_{bo,6}}\right]$$
Bond order

- The parameters are fitted on ab initio calculations and experiments (thermodynamic data, state equations, structures, diffusion ...)
- Meaning of the energetical terms
 - $^{\circ}$ E_{over} : energy penalty in case of over coordination
 - $^{\circ}$ E_{under} : energy penalty in case of under coordination
 - $^{\circ}$ E_{val} : energy associated to the angular strains
 - $^{\circ}$ E_{nen} : additional term to stabilize some specific bonds
 - $^{\circ}$ E_{tors} : energy associated to the torsion
 - $^{\circ}$ E_{coni} : energy associated to connexion between bonds
 - ° E_{vdWaals} : Van der Waals term
 - ° E_{Coulomb} : Coulombic term
- <u>cea</u>

A.C.T. van Duin, J. Phys. Chem. A, 105, 2001, 9396

A few examples of usage

> ReaxFF : crack propagation in SiO_2 in the presence of water

Transition from stress corrosion behavior to brittle fracture behavior as the strain rate increases.

ReaxFF: exchange mechanisms at a SiO₂-Al₂O₃-Na₂O glass - water interface

H. Jabraoui et al., JPCC, 125, 2021, 27170

Na₃OH clusters with tetrahedral shape are observed

Improved Monte Carlo methods since the 1990s

<u>SCK-CEN (M. Aertsens)</u>: a solid network (SiO₂-Na₂O) in contact with a solution (diffusion in solution is considered)

<u>CEA (F. Devreux, A. Ledieu, C. Cailleteau)</u>: a solid network (SiO₂-B₂O₃-Na₂O) in contact with a solution (diffusion in solution is not considered)

<u>PNNL (S. Kerisit)</u>: complexification of the solid network (SiO₂-Al₂O₃-B₂O₃-Na₂O) in contact with a solution (role of Al, role of boroxol rings)

<u>CEA (J.-M. Delaye)</u>: two intertwined networks for the solid and the solution

Possibility to simulate
 gel ripening

residual alteration rate

Machine Learning and global descriptors are increasingly employed for predicting glass corrosion

Machine learning applied on a series of Na₂O-Al₂O₃-SiO₂ glasses (299 data points): alteration at 25°C, pH between 1 and 12, S/V between 1.4 and 2 cm⁻¹, Si release is followed

 \geq

- Different methods tested: linear regression, support vector machine regression, random forest, artificial neural network
- Artificial neural network gives the best results

A. Krishnan et al., JNCS 487 (2018) 487

- Descriptors like TCT (Topological Constraint Theory) or Fnet have been tested to predict glass alteration
- Database : 20 borosilicate and aluminosilicate glasses: initial dissolution rates measured in a static mode at 90°C, pH=9

J. Du et al., JACS 104 (2021) 4445

$$F_{\text{net}} = \frac{1}{N} \sum_{\chi}^{\text{cations}} n_{\chi} \cdot CN_{\text{XO}} \cdot SBS_{\text{XO}} \cdot m_{\chi}$$

Separating the data into

low pH and high pH sets leads to better results

Conclusions

- Glass alteration can be simulated at the atomic scale (ab initio, classical molecular dynamics, Monte Carlo)
- Glass alteration can be simulated at a continuous scale (phase field approach, GRAAL)
- Machine learning and global descriptors can be used to predict the alteration behavior

But a coupling between these methods for the integration of the elementary mechanisms into a continuous scale modeling is missing \rightarrow objective of the **TANGRAM** project: multi scale modeling of glass alteration

Toward an Integrative Approach of Nuclear Glass alteration in a Reactive environment from MultiscAle Modelling

THANK YOU FOR

YOUR ATTENTION