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Waste glass formulation

• Each glass formulation must 
simultaneously satisfy a full 
set of requirements
 Product quality
 Processability
 Cost efficiency
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Vienna 2014, SumGlass 2013 Proceedings, Proc. Matl. Sci. 7:148-155 



Edisonian glass design

• Iterative glass formulation, testing, 
composition adjustment

• Time consuming (typically years)

• Can canvas likely composition 
variation with experiments

• Relatively low risk of glasses failing 
criteria, high risk of sub optimal 
solution

• Process has been successfully 
implemented for millennia
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Typical glass formulation process with models
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Experimental design methods

Design 
Type

OCAT Factorial Extreme vertices Space-filling Autonomous (GPR based)

Graphic

Pros

 Simple construction
 Easy to visualize 

non-linear 
component effects

 Simple 
construction

 Estimates cross-
term effects

 Few points per 
variable

 Some non-linear 
effects

 Non-linear effects (single 
components and cross 
term)

 Few extreme 
compositions

 Non-parametric
 Find compositional spaces 

with large uncertainty

Cons

 No cross-term 
effects

 Many points per 
variable

 Many points per 
variable

 Linear effects only
 Extreme 

compositions

 Challenging to 
construct 
extreme 
compositions

 Challenging to construct  High computational costs

Increasing optimality

Lu, X, et al. 2023. J. Am. Ceram. Soc. DOI:10.1111/jace.19333



Liquidus CCC-Crystal Cp Tg TTT Salt

ASTM C1720 ASTM C1720 ASTM E1269 ASTM E1545 Grange 1941 Jin et al. 2018

Experimental methods

Viscosity Conductivity PCT MCC-1 VHT TCLP

ASTM C965 ASTM C657 ASTM C1285 ASTM C1220 ASTM C1663 SW846-1311
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Specimens Deionized water 

Pt wire 

Stainless steel support 

Vessel 
closure 
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Stainless 
steel vessel 



Typical glass property models

• Most property values vary smoothly with composition
• Some properties also vary with temperature (e.g., η, ε) 

for which common equations are used
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Partial quadratic mixture (PQM) model form:
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P = property, pi = ith term coefficient, xi = ith term mass or mole fraction, 
pii = ith quadratic term coefficient, pij = ith-jth cross product term coefficient

Model Equation

Arrhenius ln 𝜂 = 𝐴 +
𝐵 𝐱

𝑇
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Tammann
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MYEGA ln 𝜂 = 𝐴 +
𝐵(𝐱)
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Vienna 2014, SumGlass 2013 Proceedings, Proc. Matl. Sci. 7:148-155; Heredia-Langner et al. 2022, IJAGS 13:514-525 
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Property models with machine learning

Review articles:

• De Guire et al. J Am Ceram Soc. 
2019;102(11):6385–6406.

• Liu et al. J Non-Cryst Sol. X. 2019;4:100036.

• Montazerian et al. Int Mater Rev. 
2020;65(5):297–321.

• Singh et al. Mater Sci Eng B. 2022;284:115858.

• Lu et al. J Am Ceram Soc. 2023:19333

• Many methods developed to predict or 
categorize data using machine learning

• E.g., LLR, GPR, ANN, SVM, KNN, DT, RF, 
GNB, QDA

Dissolution [Krishnan et al. 2018] Elastic Modulus [Hu et al. 2020] Tg [Mastelini et al. 2022]



GlassNet

• Discussion of ML wouldn’t be complete without 
mentioning Cassar’s GlassNet
 An incredible tool that predicts many of the properties 

important to waste glasses
 However, it doesn’t predict all properties of interest, and 

isn’t currently available under the needed QA
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Waste glass optimization with ML models

• Use mass fraction of glass oxide components 
for features to train models
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Waste glass optimization with ML models

• Incorporated ML (sklearn) directly into optimization code (Gekko) [Gunnell et al.2023, Processes]

• Cannot directly handle uncertainties [Marcial et al. 2023, J Haz Mat.]

• Currently developing an analytical solution for process uncertainties
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Quantitative structure-property relationship (QSPR)

Du et al. 2021. J. Am. Ceram. Soc, 104(9):4445-4458.
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Model 
terms/features

 Compositions

 Structural features/descriptors

o Theoretical calculations

• Boron coordination (N4)

• Non bridging oxygen (NBO)

• Network connectivity

o Experimental characterizations

• NMR

• XANES and EXAFS

• Neutron diffraction/scattering

o Molecular dynamics (MD) simulations

o Topological constraint theory (TCT)

o QSPR (Fnet)

 Experimental conditions

• Thermal history

• Pressure

• pH and temperature Topological constraints

[Mascaraque et al. 2017]
Experimental conditions

[Thorpe et al. 2021]

Structure features

Compositions
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Initial dissolution rate models with MD structural 
features

Lu et al. 2023. J Am Ceram Soc. 106:1025-1036
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Thank you
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Nuclear waste glass optimization

Marcial et al. (2023). J Haz Matl. 132437
Lu et al. (2021). Nucl Eng Des., 385:111543.

Partial quadratic mixture (PQM) model form:
𝑓(𝑦) = ∑ 𝛽௜𝑔௜
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Maximize waste loading
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Waste glass 
optimization 
with ML models

• Developed a Python programing code to run glass 
optimization routine with the GPR models.

• Obtained comparable results (waste loadings) as 
using the traditional PQM property models.

• Glass optimization routine can learn from new data 
as generated, as well as update interpolation 
method conveniently. 

• Be able to demonstrate the possibility of using ML 
models with prediction uncertainties in waste glass 
formulation.

Property Example Constraints

PCT-B ≤ 2 g/m2

PCT-Na ≤ 2 g/m2

VHT ≤ 50 g/m2/d

ε1150 0.12 ≤ ε1150 ≤ 0.59 S/cm

η1150 20 ≤ η1150 ≤ 80 Poise

SO3 tolerance (wt%) SO3 in melter feed ≤ melter SO3 tolerance
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Challenges and outlook
 Machine learning

o Standard protocols and benchmark models

o Uncertainty quantification

o Develop composition-structure-property models

 Optimization

o Capacity issue of Python optimization packages 
with ML packages

o Utilize HPC

 Machine learning

o Standard protocols and benchmark models

o Uncertainty quantification

o Develop composition-structure-property models

 Optimization

o Capacity issue of Python optimization packages 
with ML packages

o Utilize HPC

Gunnell et al. (2022). Processes, 10(11), 2365.



Experimental validation of LAW ALG glasses
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