DISTEC/DIR/23.0036

### KEY ISSUES RELATED TO THE DISPOSAL OF HL VITRIFIED WASTE: FEEDBACK FROM THE CIGEO PROJECT

### sumglass

September 27th 2023

Stéphan Schumacher, Christelle Martin, Nicolas Michau, Yannick Linard **Andra** 

This document is the sole property of Andra. It cannot be reproduced or communicated without its prior permission.



entre entre

Tête d'alvéo



Low carbon steel disposal container (~ 63 mm thickness)

Gallery



Partie utile destinée au stockage des colis

### Cigéo project Current status and next steps

o Submission of the construction license application of Cigéo on January 16th

• Crucial step marking both a culmination and a new start for the project



- Result of 30 years of progressive development under regular evaluation
- Based on well-defined design principles and a robust safety demonstration
- Over 10,000 pages
  - + lots of support documents
    - Scientific and technological knowledge base (more than 13,000 pages)
      - $\Rightarrow$  Including vitrified waste behavior (~900 pages)



DISTEC/DIR/23.0036

ANDRA

### Cigéo project Current status and next steps

• Submission of the construction license application of Cigéo on January 16th

**CIGÉO PROJECT - MAJOR MILESTONES** 

• Crucial step marking both a culmination and a new start for the project

### • Next major milestones

 A mature project but still tremendous works and numerous steps to become a reality



DISTEC/DIR/23.0036

### Cigéo project Current status and next steps

- $\,\circ\,$  Submission of the construction license application of Cigéo on January 16th
  - Crucial step marking both a culmination and a new start for the project

### Next major milestones

 A mature project but still tremendous works and numerous steps to become a reality

### Regarding the disposal of HL vitrified waste:

- What are the lessons learned during the development of Cigéo?
- Now that Andra has submitted the construction license application and construction of Cigéo could begin in a few years' time, is there still a need for R&D on HL vitrified waste?

DISTEC/DIR/23.0036





### Cigéo project Site and host rock formation



# Cigéo project Surface and underground facilities







# Cigéo project Surface and underground facility







HLW

ILW

-LL

# Cigéo project Surface and underground facility



Sumglass 2023, Tuesday September 27th

10

### Cigéo project **Underground facility**

### Designed to be reversible for at least 100 years





ANDRA

DISTEC/DIR/23.0036

ANDRA

# Development of the project The Science – Design – Safety loops



ANDRA

### The Science – Design – Safety loops Influence of design evolution

- At first, the design of the HL vitrified waste disposal cells included a bentonite engineered barrier
- First studies: pure water then clayey water
  - Knowledge based on experiments with FoCa 7 bentonite <sup>1</sup>
    - Same forward rate  $(2 \times 10^{-3} \text{ g/m}^2/\text{d})$  with FoCa 7 or in pure water
    - Alteration dropped much faster in pure water
    - $\Rightarrow$  Effect of pH (7.5 in clayey water vs. 8.5 in pure water)

### $\circ$ Abandonment of the bentonite engineered barrier (~2005)

- · Experiments with Callovo-Oxfordian porewater
  - Forward dissolution rate 5 times greater than in pure water <sup>2</sup>
    - $\Rightarrow$  Influence of ionic strength and concentration of alkali metal / alkaline earth cations (mainly Ca<sup>2+</sup>)
  - Rate drop may be delayed (and long-term rate increased) due to precipitation of Mg silicates (leading to a decrease of pH) <sup>3</sup>
    H<sub>4</sub>SiO<sub>4</sub>(aq) + Mg<sup>2+</sup> + H<sub>2</sub>O → magnesium silicates + H<sub>3</sub>O<sup>+</sup>

<sup>1</sup> S. Gin *et al.* / Applied geochemistry 16 (2001) 861-881 <sup>2</sup> P. Jollivet *et al.* / Chemical Geology 330-331 (2012) 207-217 <sup>3</sup> P. Jollivet *et al.* / J. Nucl. Mater. 420 (1–3) 508-518 (2012)

DISTEC/DIR/23.0036







### The Science – Design – Safety loops New knowledge $\rightarrow$ Design evolution $\rightarrow$ New R&D



DISTEC/DIR/23.0036

### The Science – Design – Safety loops New knowledge $\rightarrow$ Design evolution $\rightarrow$ New R&D

- Near-field oxidized claystone creates transiently acidic conditions:
  - Partial dehydration of claystone
    - Increased [CI<sup>-</sup>]
  - Pyrite oxidation
    - Formation of sulfuric acid (H<sub>2</sub>SO<sub>4</sub>)
    - Attack of carbonates  $\Rightarrow$  formation of CO<sub>2</sub>
    - $CO_2$  dissolution  $\Rightarrow$  increased acidity
- o Corrosion rates remain high even after returning to neutral conditions





### The Science – Design – Safety loops New knowledge $\rightarrow$ Design evolution $\rightarrow$ New R&D

- Near-field oxidized claystone creates transiently acidic conditions:
  - Partial dehydration of claystone
    - Increased [CI<sup>-</sup>]
  - Pyrite oxidation
    - Formation of sulfuric acid (H<sub>2</sub>SO<sub>4</sub>)
    - Attack of carbonates  $\Rightarrow$  formation of CO<sub>2</sub>
    - $CO_2$  dissolution  $\Rightarrow$  increased acidity
- Corrosion rates remain high even after returning to neutral conditions
  - "Active" corrosion process under deposits after the acid transient







DISTEC/DIR/23.0036

### The Science – Design – Safety loops New knowledge $\rightarrow$ Design evolution $\rightarrow$ New R&D

- Near-field oxidized claystone creates transiently acidic conditions:
  - Partial dehydration of claystone
    - Increased [CI<sup>-</sup>]
  - Pyrite oxidation
    - Formation of sulfuric acid (H<sub>2</sub>SO<sub>4</sub>)
    - Attack of carbonates  $\Rightarrow$  formation of CO<sub>2</sub>
    - $CO_2$  dissolution  $\Rightarrow$  increased acidity
- $\circ~$  Corrosion rates remain high even after returning to neutral conditions
  - "Active" corrosion process under deposits after the acid transient
- Two possibilities
  - To carry out R&D to demonstrate the transient nature of high corrosion rate
  - To modify the design by injecting a cementitious filling grout between the steel sleeve and the host rock (~2014)
    - Formulate this material and verify the contradictory requirement of corrosion protection and absence of significant effect on glass alteration
    - ⇒ Evolution of the R&D program on vitrified waste





DISTEC/DIR/23.0036

# The Science – Design – Safety loops Evolution of design: HLW disposal cell



### The Science – Design – Safety loops Evolution following a more precise definition of the project

- Post-weld heat treatment of the overpack lid:
  - · Current production methods limit the rise in temperature
    - Treatment of welds in a localized area: choice of induction treatment vs furnace treatment
  - · Requirement exceeded in very localized area
    - A few % of the volume on the ends of the glass
- o 3 options for dealing with this situation
  - Improve the process to limit glass temperature
    - Modify the thermal stress-relieving cycle
      - Test the limitation of the bearing temperature in the demonstrator workshop
  - · Develop a thermal insulator
    - Confirm results obtained with a heat shield made of silica fibers, whose performance has been verified by testing on a representative mock-up
      - This solution has the disadvantages of adding a step to the process and adding a foreign body whose long-term impact remains to be assessed
  - Revise the temperature criterion not to be exceeded for short durations
    - Study the phenomenological risk of glass recrystallization, in relation to the short duration for which the temperature criterion is exceeded

DISTEC/DIR/23.0036

This document is the sole property of Andra. It cannot be reproduced or communicated without its prior permission.

#### Colis R7T7 - COG200 - cycle thermique n°2







Sumglass 2023, Tuesday September 27th



# Long-term behavior science <sup>1</sup>

#### Parametric/mechanistic experiments and mockup





Glass / corrosion products interactions (CEA)



ArCorr (CEA)

### t = 10000 t = 20000 t = 50000 t = 100000 t = 180000 150 nm

Monte Carlo simulation: evolution of gel (Ledieu, 2004)

#### **Modeling**



GRAAL (CEA)

### In-situ experiments



MCO 1231



<sup>1</sup> C. Poinssot & S. Gin / Journal of Nuclear Materials 420 (2012) 182-192 DISTEC/DIR/23.0036



MVE 1201 « rate drop »



Glinet 16th century (LAPA)









ANDRA

This document is the sole property of Andra. It cannot be reproduced or communicated without its prior permission.

Natural or archeological analogs

### Long-term behavior science Phenomenological evolution of disposal cells





### Long-term behavior science Phenomenological evolution of disposal cells



#### Off-profile



Disposal cell excavation



Thickness of cementitious filling grout between 2 and 22 cm (mean value = 8 cm)





DISTEC/DIR/23.0036

This document is the sole property of Andra. It cannot be reproduced or communicated without its prior permission.

### Long-term behavior science Phenomenological evolution of disposal cells





DISTEC/DIR/23.0036



### Long-term behavior science Phenomenological evolution of disposal cells



# R&D based on situations representative of the evolution over time of the HL vitrified waste disposal cells

DISTEC/DIR/23.0036



### Long-term behavior science Phenomenological evolution of disposal cells



DISTEC/DIR/23.0036

This docu

# Feedback from safety assessment

Normal evolution scenario (saturated conditions)

- Reference situation
  - Best estimate parameters
  - Glass source term:  $V_0 \rightarrow V_R$  (for most vitrified waste)
  - Total glass alteration time ~ 230,000 yr
    - Self-irradiation could reduce this time ~20,000 yr
    - The model take into account:

DISTEC/DIR/23.0036

- Mass / surface of metallic matérials
- Corrosion rate
- Nature / properties of corrosion products
- Temperature evolution over time



### Feedback from safety assessment

Normal evolution scenario (saturated conditions)

### Reference situation

- Best estimate parameters
- Glass source term:  $V_0 \rightarrow V_R$  (for most vitrified waste)
- Total glass alteration time ~ 230,000 yr
  - Self-irradiation could reduce this time ~20,000 yr
- Diffusive transfer in Cox  $\sim 800,000 \mbox{ yr}$
- $\Rightarrow$  No influence of source term on RN release out of Cox
- Main RNs: <sup>79</sup>Se (VI) (3% HLW), <sup>36</sup>Cl and <sup>129</sup>I
- Envelope situation
  - Envelope parameters
  - Glass source term:  $V_0.S \sim 2,000$  yr
  - Diffusive transfer in Cox 110,000 (Cl) 240,000 yr (Se)
  - $\Rightarrow$  No influence of source term on RN release out of Cox
  - Main RNs: Se (-II/0) (80% HLW), <sup>129</sup>I and <sup>36</sup>CI

DISTEC/DIR/23.0036





# Which R&D for the future?

R&D on vitrified waste is linked to

- The maturity of project development
- $\circ~$  The "Science/ design / safety " loops, which continue even after the disposal has been commissioned
  - New input data, new knowledge, etc.

#### Feedback from safety assessments

• The cornerstone of the safety is the host-rock with the glass matrix playing a minor role

But safety assessment of Cigéo is based not only on dose calculations, but also on an understanding of how the system works

• Need to develop tools that provide a more realistic representation of the evolution of vitrified waste, and in particular taking into account finer couplings with the evolution of the environment

So there is still R&D to be done, but it is focused on topics that can have a significant influence on glass durability or on the dose to the outlet

- A finer understanding of the environmental evolution
- o Glass alteration with water vapor: long term rate, influence of fractures, influence of irradiation
- Glass alteration in water-saturated conditions:
  - influence of self-irradiation
  - Interactions between glass and its environment (carbon steel, cementitious materials...)
- To a lesser extent, inventory and speciation of Se in the glass

DISTEC/DIR/23.0036

This document is the sole property of Andra. It cannot be reproduced or communicated without its prior permission.



Ceramic overpack

CMC Liner



Sumglass 2023, Tuesday September 27th 30

# THANK YOU FOR YOUR ATTENTION

DISTEC/DIR/23.0036

