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Approaches for property modeling

O Theoretical, cognitive approach

Based on our intrinsic knowledge of the phenomenon, on the fundamental laws of physics and chemistry
(conservation of energy, momentum, equations of diffusion, thermodynamics,...)

O Empirical approach

Based on a set of experimental data (data-driven models). Mathematical, statistical approach, which ignores any
physicochemical knowledge of the phenomenon

U Mixed approach
Combination of the two previous approaches

For these three classes of models, there are different types: linear or non-linear, static or dynamic, deterministic or
stochastic, continuous or discrete,...
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Approaches for property modeling
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FIG. 1. The four paradigms of science: empirical, theoretical, computational, and data-driven.

From A. Agrawala and A. Choudhary. APL Mater. 4, 053208 (2016); https://doi.org/10.1063/1.4946894
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Approaches for property modeling

P ro p e rty Forward models

Property prediction

Composition Structure I I

Inverse models
Materials discovery
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Approaches for property modeling

O First attempt for the calculation of glass properties from their composition proposed by
Winckelmann and Schott at the end of the 19th century

O Theoretical Principle of Additivity

M.B. Volf, Mathematical Approach to Glass, Elsevier Science Publishers, 1988

G is the property of the glass
G = Z g (G) i Xi g(G); is the additive factor for oxide i and property G

x; is the amount of oxide i

» Generally valid when investigating suitably narrow composition range

» Errors in additive calculation could be due to phase separation, crystallization, degree of cross-linking, anomalies in the cross-
linked structure, interaction between ions,...
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Statistical modeling of glass properties

« Design Of Experiments » « Machine Learning »
(DOE) methodology (ML) methodology
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Statistical modeling of glass properties

« Design Of Experiments »
(DOE) methodology
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Design of experiments methodology

General principle

“a branch of applied statistics that deals with planning, conducting, analyzing, and interpreting
controlled tests to evaluate the factors that control the value of a parameter or group of
parameters” (from the American Society for Quality)

“a statistical method to study cause-effect and
it X2 phenomena-response relationships in processes
e &0 and phenomena” (Lazi¢, 2004)
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Design of experiments methodology

General principle

“a branch of applied statistics that deals with planning, conducting, analyzing, and interpreting
controlled tests to evaluate the factors that control the value of a parameter or group of
parameters” (from the American Society for Quality)

( Evolution of optimality criteria as a function \

“a statistical method to study cau_se—gffect and of the number of runs
it X2 phenomena-response relationships in processes
* & and phenomena” (Lazi¢, 2004) e eg®® o
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Mixture Design - about 20-25 experiments for a mixture DOE with 8-10
p

Q Q(ides + relational constraints (Fleury 2014, Piovesan 2017) j
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Design of experiments methodology

General principle

o X 4 I
e A2 > Key points:
o s * Adequate composition domain boundaries (no possible extrapolation)
g ) * Definition of the most optimal number of runs
07 % *  Best model selection (beware risk of overfitting)
08 - *  Model validation (additional runs)
05 .
0.6
i . » Methodology can be applied to glasses containing up to 10-12 oxides
y / 1 » Robust models, but no extrapolation outside the composition domain
o2+ Experimental - . S )
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. .
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Mixture Design
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0 Some examples of Mixture Designs for waste glass formulation at CEA "

Initial dissolution rate (R7T7 glasses)

VO,pc(gm™j")

B203
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variation des oxydes en fractions pondérales

I. Tovena, PhD Thesis, Univ. Montpellier Il (1995)
osti.gov/etdeweb/servlets/purl/270252
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Residual dissolution rate (R7T7 glasses)
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B. Fleury et al., Procedia Materials Science 7 193-201 (2014)
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Design of experiments methodology

® Glasses used for modeling
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Viscosity calculated (dPa.s)
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A Validation glasses ~ —First bisector

V. Piovesan et al., J. of Nuclear Materials, 483 90-101 (2017)
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Statistical modeling of glass properties

« Machine Learning »
(ML) methodology
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Machine Learning methodology

0 Some examples of ML use in glass science

Na-B-0 ap
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(data from Web of Science) B isod L £ | 4
E] g 650F ER
g . = 3 9" -13
a - ol . .
2 B : E = soof 3z Dissolution rate
© q; 2 E 14
= E 35 -
S 100 é e K i it i 550 Iz | (2018)
= -8
o = 1100 < ¥ ~, 4 15 P
500 [2 | » 1 R* (training)=0.985
2 - !H. ! i e (2018) | :. R (test)—0.082 i
5} ] 450 [T R R I
-2 o x Az . e e T = 0 10 2{;“ 30 40 A6 15 a4 a3 a2 - 10
Measured leaching rate
50 (a) leo molar cencentration (log|mol SiO,/em?/s|)
C. Dreyfus, G. Dreyfus | Journal of Non-Crystalline Solids 318 (2003 ) 63-78 D.R. Cassar et al., Acta Materiala, 159 249-256 (2018) N.M. Ancop Krishnan I&l‘ al 2
1 Journal of Non-Crystalline Solids 487 (2018) 3745
| L | L | L | L |
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Machine Learning methodology

0 Some examples of ML use in glass science

Literature on Machine Learning Example of NN use for SEM image analysis at CEA (crystal recognition)
150- for glass science

(data from Web of Science) Test
Superclasse Measures
@ Generalized RSquare 0,9647809
K=l Entropy RSquare 0,8870834
T 100 RMSE 0,1757289
5 Mean Abs Dev 0,0775361
2 Misclassification Rate 0,0348259
%S -LogLikelihood 199,39034
o Sum Freq 1608
Z 50 Confusion Matrix
Actual Predicted
Superclasse Apatite Platinoide Powellite
| Apatite 541 1 T
Platinoide 6 527 13
| PREE——" ] | _ Powelite 1 28 484
2000 2005 2010 2015 2020 2025 Confusion Rates
Year Actual Predicted
Superclasse Apatite Platinoide Powellite
Apatite 0,98543 0,00182 0,01275

Platinoide 0,0108¢ 096520 0,02381
Poweliite 0,00195 0,05458 0,94347

» Development of more and more
powerful ML algorithms
» Availability of open access database on

glass properties » Neural Nets good capability for image analysis

(from internal CEA studies)

» Rate of classification up to 98%
@ Damien PERRET SumGlass, Nimes 2023 16
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Machine Learning methodology

0 Background information

N | net K sch tic d ot Examples of non-linear methods:
éural network schematic description Support vector machines, random forests, neural networks

Artificial Intelligence

Machine Learning

i Any technique that
Deep Learning A subset of Al that Ve 9
. . g : enables computers
The subset of machine learning includes abstruse 751,
: A to mimic human
composed of algorithms that permit statistical techniques . . :
.o i : intelligence, using
software to train itself to perform tasks that enable machines sty
) it # logic, if-then rules,
eech and image recognition, to improve at tasks !
: S : : decision trees, and
(posing multilayered neural networks to with experience. The 2 N
. machine learning
vast amounts of data. category includes £ 3
: (includingdeep
deep learning .
learning)

0.5 06 0.7 0.8 0.8

http://openclassroom.stanford.edu/

Source : https://www.unite.ai
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Machine Learning methodology

J Two main sources of data

# SciGlass Professional 7.10 BER i i "
Query Options Window Help File Tools Help l
Dl 8 p|~ @ 6oz & a6 5 o]a] [0 _untstng: 3 (B () rlealea
i K| I _zi ¥ Z={R = 2 e e INTERGLAD 8
Queries for Tables Search for Glasses (Experimental Data) x|
[E] Common Guery Included ded System System Type
= g r—
Author Index B20s Pz0 : .
[ Estentingex st . [l=us International Glass Database System
- ca0 Ro: Ot |
[=] Trademark index Mg R20s Kind of % - ‘
200 ROs Molar % =
pOg o— »- VERGLAD vers
Spectral Index Feally (Cmeee ’l:u-pn-m:’:s--dmﬁ . ’ S ot ] N GLASS FORUM
& Table by Number (O Selected companents only " » d G
(® Other components alowed
Queries for Glasses [—|
upt [ Any j %
Experimenta] Data Glass Property & Structure Database
Predicted Properties INTERGLAD 8 (ver.8.3.1.0.03)
Similar Compositions
Ternary Diagrams
@ B Dia —_— The international glass database system INTERGLAD was released in 1991
Property Diagram Search Pr i
operly Data for the first time in the world by the New Glass Forum.
Glass Formation Cd O LGew | Goen | B | e | = Newly Ver.8 has i perty data of appr
Others | Property Prediction ‘ 340,000 glasses and includes a glass structure database newly developed
[ —— —_—___,,, with structural data of approximately 10,000 glasses.
=2dllass Lalcdlator [ Besides, new functions for increasing prediction accuracy and tools
User Duta (Broperty Date) for easier search and prediction have been added. Main functions are

Database Browser u
g  —— T ——] 1) Search of glass data,
SciGlass Statistics Search Structure Data 2) Analysis of searched glasses,
e i 3) Prediction of properties and design of glass composition,

Search for glasses belonging to a Exit 4) Registration and utilization of user data.
certain concentration range with
prescibed values of
experimentally measurad
properties

SciGlass database now available under an ODC Open Database
License (ODbL) at https://github.com/epam/SciGlass
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Machine Learning methodology

O Interglad interface

Contents of Data [ Server]

INTERGLAD 8

|=] Contents of Data : 371407
o [ state

o~ (=] Usage

o [J Data Source

o~ (=] Component

o= ] Glass System

?- (=] Broperty
¢ ] Mechanical, Physical
o~ ] Thermal
o~ [ Optical
o [CJElectrical, Magnetic
o~ [ Chemical, Biochemical
¢~ [ Characterization
o~ [ Miscellaneous

o-Gﬁppea:ance, Feature, Process

Damien PERRET
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L] AD Glass P O ,
File
ICIE] INTERGLAD 8
Contents of Data [ Server]
[=]contents of Data : 371407
o [ state
o ([ appearance, Feature, Process
o [=] Usage
©- ] Data Source
o Ij Component
¢ [CJGlass System
D Silica 3918
[} a1xali silicate 97648
[} aixaline-earth silicate 93504
[} Lead-silicate 11825
[) Bore-silicate 53737
D Alumino-Silicate 64517
[} zinc-silicate 11558
[ Fluoro-silicate 4593
[} other silicate 33469
[} Bozate 48240
[ ehosphate 37659
D Fluoro-Phosphate 4727
O read 11503
D Tellurite 12489
[} 2luminate 4526
D Germanate 10228
[ oxynitride 2440
[} other oxide 38305
D Chalcogenide 18575
[ Fruoride 13446
[} Halide (Except Fluoride) 7214
D Other Non-Oxide 2458
D Amorphous Metal 3748
[Yochers 221
[} wen-vitrified 2735
[ Unidencified 2590

& [ Property
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The viscosity case

Why is glass melt viscosity prediction so challenging? EEEE

- Range of viscosity values is very wide vs temperature and

vs composition (~ 13 orders of magnitude)

-> Viscosity is not simply additive, it depends on bonding forces (valence theory,
Myuller) and deformability of unit groups (free volume theory, Turnbull and
Cohen) = chemical dependence of viscosity is extremely complex

- Viscosity temperature dependence is highly sensitive to phase separation and
crystallization

Above T,
Strain point Glass melt Homogeneous melt
Annealing poi composition (no crystals)
fINGEIng poirt Temperature P
' o, A NEWTONIAN
2o, & 06 o
; %’G“ 6@@ (\6‘ '1‘0\'0"9
.‘ 7 W
IMAK 66€44 ?bﬁ,s‘qzée’@\? Wed 27. 10h45: Rheology of
Kolmo“gorov, 1937 "3‘@4 & (;b“s . . .
Softening point Avramj, 1937 partially crystallized simulated
) . : nuclear glass melts - Elise Régnier
Viscosity g g
; Kouchi, 1986
Working point Crystals Jiusti, 2023 Saar, 2007 Shear
. . . Puig, 2016
o Melting poin fracTuon f.‘;'f;",i’?rg a5 reite Below T,
Goswami, 2021 Liguid phase + crystals
Pereira Machado, 2022
IMAK |
- ‘ Montakerian, 2022 g
400 600 800 1000 1200 1400 1600 : _NQN N_E WTO_N ’AN
Temperature () ‘ Particles (= wscgsrty varies with
Time - morphology and -~ applied shear rate)
g disposition
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Predicted viscosity {dPa.s)

The viscosity case

Why is glass melt viscosity prediction so challenging?

WW

U Viscosity prediction of simple SiO,-B,05-Na,O (SBN) glasses at 1200°C

SBN compo #1 SBN compo #2
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The viscosity case

Why is glass melt viscosity prediction so challenging?

U Neural Nets not always appropriate to predict melt viscosity

Training

Ln visco

14

Al
Ln visco Predicted

& 9 10 11 12 13 14

Ln visco

Measures Value
RSquare 0.9287269
RMSE 0.7518628
Mean Abs Dev  0.496624
-LogLikelihood 64350916
SSE 3208.6293
Sum Freq 5676

Damien PERRET

Ln visco

Ln visco

Measures Value
RSquare 0.8822247
RMSE 0.9682362

Mean Abs Dev  0.5912263
-Loglikelihood 2545.9066
SSE 1721.2158
Sum Freq 1836

15.0 | T T - T T T . : ] )
&
- 4100 &
12.5 F g .
- 150 o
=
g 10'0 i I} 1 1 1 ] . i
é -2-10 1 2 0
S 7.5 Pred. residual .
o] : X
9 5
S 5.0 R .
o "
T D Bk ot
5.6?.891011121314 D‘: 2
Ln visco Predicted 2.5 - -
0.0F .
-2.5¢p 1 1 1 L
0 5 10 15
Reported logio(n)

D.R. Cassar, Acta Materialia 206, 116602 (2021)
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The viscosity case

Why is glass melt viscosity prediction so challenging?

O Innovative approach for glass melt viscosity prediction
(from CEA internal studies)

Methodology based on a dynamic and automatic dataset for model training

Dynamic: the training set depends on the composition of interest
Automatic: all steps are done by

algorithms implemented in the tool

T

; @ . 7 #
Virtual DOE (theoretical) Final training dataset

e
v e
-
.
. 5 p/ L]
®, ey ° e L L Rt . .
., Y .« ....l' 2 :. a N . %
o 313 °®
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The viscosity case S
Why is glass melt viscosity prediction so challenging?

O Innovative approach for glass melt viscosity prediction

(from CEA internal studies)

L S i 5

Methodology based on a dynamic and automatic dataset for model training

Dynamic: the training set depends on the composition of interest
Automatic: all steps are done by algorithms implemented in the tool

oy

w
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The viscosity case LR
Why is glass melt viscosity prediction so challenging?

O Innovative approach for glass melt viscosity prediction
(from CEA internal studies)

Results obtained on SBN glasses

: 200%

Methodology based on a dynamic and automatic dataset for model training
100%-
50%- I
mill l
o & 2

Dynamic: the training set depends on the composition of interest
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The viscosity case LR
Why is glass melt viscosity prediction so challenging?

O Innovative approach for glass melt viscosity prediction

(from CEA internal studies)

Methodology based on a dynamic and automatic dataset for model training

Dynamic: the training set depends on the composition of interest Results obtained on test set (N=230)
Automatic: all steps are done by algorithms implemented in the tool

. . L Borosilicate glass Sodo alumino silica Overall
Vlsc?sﬁy prediction for nuclear waste glass
relative error N=T3 N=55 N=230
Quantile 50% (median) "M% 18% 17%
- Quantile 75% 19% 35% 34%
Quantile 90% 37% 73% 7%
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Why is glass melt viscosity prediction so challenging?

O Innovative approach for glass melt viscosity prediction

(from CEA internal studies)

Methodology based on a dynamic and automatic dataset for model training
Dynamic: the training set depends on the composition of interest
Automatic: all steps are done by algorithms implemented in the tool

- . - -

.\ . - \’.

Results obtained on test set (N=100)
(Tg value prediction)

Tg pre diction Borosilicate glass Sodo algu':;:o silica Overall
error N=80 N=20 N=100
Rel. Abs. Rel. Abs. Rel. Abs.
1 0,

ek 14% | 7°C | 1,7% | 10°C | 1,5% | 7°C
(median)

Quantile 75% 28% | 13°C | 3,2% | 17°C | 2,9% | 14°C
Quantile 90% 51% | 29°C | 42% | 19°C | 4,7% | 26°C
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Conclusion

O Data-driven models have been used for decades in the field of glass property prediction
O First models were based on the additivity equation and often lead to good prediction accuracy

O Two types of methodology were presented:

» Experimental designs: very robust and accurate on small domain of composition
- PNNL legacy from the mid 80s

» Database and ML.: suitable to large datasets

O Glass melt viscosity prediction remains one of the most difficult property to predict on large domain
of compositions

O “Black box” Neural Nets not always appropriate to predict melt viscosity from composition only,
current limitation of ML not able to take into account mecanisms like crystallization, PGM
segregation,...

O Key pointin a relevant use of ML relies on the ability to implement glass science expert knowledge
in the algorithms

Q Damien PERRET SumGilass, Nimes 2023 28
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