

硅酸盐建筑材料国家重点实验室 State Key Laboratory of Silicate Materials for Architectures

Thermal Plasma Treatment of Dry Waste from Nuclear Power Plants in China

Kai Xu

State Key Laboratory of Silicate Materials for Architectures

Wuhan University of Technology

Sep. 25th, 2023 Nimes, France

Background – rapid growth of nuclear power in China

> 55 nuclear power units under operation, 23 units under construction
> 70 GW/15000 t (2025) to 200 GW/35000 t (2035)

Background – nuclear fuel cycle and nuclear waste management

- > >50,000 m³ of HLW from reprocessing by 2035
- >2000 m³/y of ILW/LLW from NPPs

Background – current management of dry waste from NPPs

Active dry wastes were compressed, cementitious immobilized, and then disposed in the near surface

Why TPT?

Typical temperature profile -Torch Chamber 3 3 2 2 1.5 1.5 T [x 1000°C]

Thermal plasma is generated by a high voltage discharge as gas flowing

- Temperature of plasma arc, high: the core: >10K °C; easily control
- High pyrolysis efficiency,
 high reactivity of the matter
- Controllable atmosphere,

厚德博学 追求卓越

Iess off-gas...

Research scaled TPT test

TPT development – mobility

Developed for nonactive hazardous waste

Treatment of hazardous waste in a chemical plant

> Potential on active NPPs dry waste

Laboratory study:
Thermal treatment of dry waste
Glass formulation of residual ashes

Thermal treatment of individual dry waste @1000°C

>>90% mass loss, except filter media (glass fiber)

Waste glass formulation – filter media (glass fiber)

> The viscosity of filter media is high for waste glass melting

厚德博学 追求卓越

CaO and Na₂O was added to reduce viscosity

Waste glass formulation – filter media (glass fiber)

> Plot T profile (η =10 Pa·s) to filter media-CaO-Na₂O

> Determine effects of CaO and on T_{v10}

Volatilization test for 86filter media-10CaO-4Na₂O

RT to target temperature

Dwelling time

厚德博学 追求卓越

Volatility of nuclides: Cs>Sr

Volatilization test for 86filter media-10CaO-4Na₂O

厚浊博学 追求卓越

The losses of Cs and Sr could be estimated

Waste glass formulation – single waste (cotton) ash

- The min. glass additive: ~5 wt%
- Easy to form the Ca-related crystalline phases

Waste glass formulation – mixing single waste ash

Rationally mixing single waste ashes could form the durable glass without any additives

For more information, please contact E-mail: kaixu@whut.edu.cn

