MODELING PHASE SEPARATION IN THE MELT: THERMODYNAMICS, FLUID FLOW AND HPC SIMULATIONS

September 27th, 2023

FROM RESEARCH TO INDUSTRY

<u>A. CARTALADE^a</u>, W. VERDIER^a, C. MÉJANÈS^a, S. SCHULLER^b, S. GOSSÉ^c, R. LE TELLIER^d

^aCEA – Paris-Saclay, ISAS, DM2S, STMF, LMSF
 ^bCEA – Marcoule, ISEC, DPME
 ^cCEA – Paris-Saclay, ISAS
 ^dCEA – Cadarache, IRESNE, DTN, SMTA, LMAG

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

- Introduction: demixing in nuclear glass
- ② Simulations of thermodynamics
- ③ 3D simulations of thermo with fluid flow
- Ourrent works Perspectives

Introduction: demixing in glass

Observations of phenomena in glass (CEA/DPME)

Intermediate temperature

Modeling phase separation in the melt: thermodynamics, fluid flow and HPC simulations

4/27

C22 Thermodynamics of both demixing regimes

- Homogeneous mixture of SiO₂ and MoO₃ for T > T_c (T_c critical temperature)
- For T < T_c the system is unstable; SiO₂ and MoO₃ start to separate.

Phase diagrams of SiO_2 -MoO₃ (2 phases + 2 comp)

Observation S. Schuller (DPME, 2013)

The "composition" c(x, t) is defined such as locally

$$c_1^{eq} \leq c(\pmb{x},t) \leq c_0^{eq}$$

Binary phase diagram From S. Gossé, (DRMP, 2013)

Notations:

- eq for thermo equilibrium
- 0 for "Matrix" and 1 for "Droplets"

5/27

Phase diagrams for SiO₂–Na₂O–MoO₃

Calphad modeling from S. GOSSÉ

C22 Objectives of this presentation

For simulating phase separation					
• What are the math equations ?					
• How to connect them with the thermo database of Calphad modeling ?					
• How to take into account the effects of viscosity and density (gravity) ?					
Math model based on the "phase-field theory"					
Advantages	Drawbacks				
 Thermodynamic consistency 	Appendix				
 Interface-tracking (eulerian approach with diffuse interface) 					
• Possible expansion for 3-phases and <i>n</i> -components					
Methodology presented for simplified glass					
• For two components: $SiO_2 - MoO_3$ (binary)	 For constant tempe 	rature			
• For three components: $SiO_2 - Na_2O - MoO_3$ (ternary))				
CEA – September 27th. 2023 Modeling phase separation in the	melt: thermodynamics, fluid flow and HPC	simulations			

Overview of the phase-field theory

Concepts of phase-field method

- ▶ Introduction of a *phase-field* $\phi(\mathbf{x}, t)$
- Its evolution minimizes a thermodynamic potential

ex. free energy $\mathscr{F}[\phi,c]$ (or grand pot, Gibbs, ...)

$$\mathscr{F}[\phi,c] = \int_{V} \left[Hf_{dw}(\phi) + rac{\zeta}{2} (\mathbf{\nabla}\phi)^2 + f_{bulk}(\phi,c) \right] dV$$

Coupled to balance Eqs (mass, impulsion, ...)

Interface nomenclature

- W interface width
- σ surface tension
- n(x, t) unit normal vector
- $\kappa(\mathbf{x}, t)$ curvature (= $\nabla \cdot \mathbf{n}$)

8/27

Methodology of phase-field simulations 602

Simulations of thermodynamics

10/27 CEA - September 27th, 2023

Two-phase with two components: Cahn-Hilliard model

CEA -September 27th, 2023

Pros and cons of Cahn-Hilliard model

1. Advantages

- Simulates various phenomena:
 - droplets coalescence, R-Taylor instab
 - spinodal decomposition
 - etc ...
- ② Can be extended to 3 components

2. Drawbacks

- Is Fourth-order derivative (bi-laplacian)
- Contains the thermodynamics and the interface properties
- \longrightarrow difficult to fit thermodynamic without modifying σ and W

3. Need of alternative model Separate "interface" and "diffusion" properties for 2 phases and multi-components system model based on the Allen-Cahn equation (example on 3 components)

Cea Two-phase with three components $SiO_2-Na_2O-MoO_3$

CEA - September 27th, 2023

Grand-potential formulation of phase-field model

Use $\mu = (\mu_A, \mu_B)$ for defining the thermodynamics (not *c*) Now ϕ only tracks interface ($0 \le \phi \le 1$)

Thermodynamic functional of Grand-potential
$$\Omega[\phi, \mu_c]$$
 From M. PLAPP, 2011

$$\Omega[\phi, \mu] = \int_{V} \left[\underbrace{\omega_{int}(\phi, \nabla \phi)}_{\text{interface}} + \underbrace{\omega_{bulk}(\phi, \mu)}_{\text{thermodynamics}} \right] dV \quad \text{with} \begin{cases} \omega_{int}(\phi, \nabla \phi) &= H\phi^2(1-\phi)^2 + \frac{\zeta}{2} |\nabla \phi|^2 \\ \omega_{bulk}(\phi, \mu) &= p(\phi)\omega_0(\mu) + [1-p(\phi)]\omega_1(\mu) \\ p(\phi) &= \phi^2(3-2\phi) \end{cases}$$

$$\omega_{\Phi}(\mu) = f_{\Phi}(c) - \mu \cdot c \quad \text{(Legendre transform)}$$

Assumption: quadratic free energies for f_{Φ} (2 parabolas)

$$\mathcal{K}_{\Phi}(\boldsymbol{c}) = rac{1}{2} \boldsymbol{K}_{\Phi} : (\boldsymbol{c} - \boldsymbol{c}_{\Phi}^{eq})^2 \qquad \qquad ext{where} \quad \boldsymbol{K}_{\Phi} = \left(egin{array}{c} K_{\Phi}^{AA} & K_{\Phi}^{AB} \\ K_{\Phi}^{AB} & K_{\Phi}^{BB} \end{array}
ight) \quad ext{for } \Phi = 0, 1$$

 \longrightarrow Determine $\mathcal{K}^{\alpha\beta}_{\Phi}$ coefficients from the thermo landscape (Calphad)

Using the Calphad results for math model ~07

1. Pre-processing

- Transform elements to oxides + global eq
- Turn off the grid minim (hyp local eq)
- interpolate the non-converging local eq

Methodology (1, 2, 3) from R. LE TELLIER. 2021

 \longrightarrow We obtain the $\mathcal{K}^{\alpha\beta}_{\Phi}$ coefficients

CEA - September 27th, 2023

Phase-field model to simulate

Thermodynamics: compositional Allen-Cahn (ϕ^{AC} -model)

Interface tracking

$$\frac{\partial \phi}{\partial t} + \underbrace{\nabla \cdot (\boldsymbol{u}\phi)}^{\text{Curvature }\kappa |\boldsymbol{\nabla}\phi|}_{\boldsymbol{\phi}} = M_{\phi} \left[\nabla^2 \phi - \frac{1}{4W^2} \omega'_{dw}(\phi) \right] - \underbrace{\frac{\lambda M_{\phi}}{W^2} p'(\phi) \left[\omega_0(\boldsymbol{\mu}) - \omega_1(\boldsymbol{\mu}) \right]}_{\boldsymbol{W}}$$
(2)

Diffusion Eqs of SiO_2 and Na_2O

$$\frac{\partial c^{A}}{\partial t} + \boldsymbol{\nabla} \cdot (\boldsymbol{u}c^{A}) = \boldsymbol{\nabla} \cdot \left[D^{A}(\phi)\boldsymbol{\nabla}\mu^{A} \right] \quad (3a)$$
$$\frac{\partial c^{B}}{\partial t} + \boldsymbol{\nabla} \cdot (\boldsymbol{u}c^{B}) = \boldsymbol{\nabla} \cdot \left[D^{B}(\phi)\boldsymbol{\nabla}\mu^{B} \right] \quad (3b)$$

Relationship between μ and c

$$\boldsymbol{\mu} = \boldsymbol{K}(\phi) \left[\boldsymbol{c} - \boldsymbol{c}^{eq}(\phi) \right]$$
(3c)

Initial conditions

16/27

using
$$c_0^{eq}$$
, c_1^{eq} and C^{glass} (details in Part 3)

Ceal Illustration of ϕ^{AC} -model: Ostwald ripening

The phenomenon

Smaller droplets vanish whereas the larger ones grow because

- Larger droplets have a lower μ (Gibbs-Thomson cond)
- Diffusion flux from lower to larger droplets $({m j} \propto {m
 abla} \mu)$

17/27

3D simulations of thermodynamics with fluid flow

18/27 CEA - September 27th, 2023

Ceal Coupling with fluid flow

Hydrodynamics properties

• ρ_0 , ρ_1 : bulk **densities** of each phase

$$\varrho(\phi) = \rho_1 \phi + \rho_0 (1 - \phi)$$

• η_0 , η_1 : **viscosities** of each phase $\eta(\phi) = \frac{\eta_0 \eta_1}{\phi \eta_0 + (1 - \phi) \eta_1}$

Navier-Stokes (NS) with gravity and capillary forces

$$\nabla \cdot \boldsymbol{u} = 0 \tag{4a}$$

$$\frac{\partial \varrho \boldsymbol{u}}{\partial t} + \nabla \cdot (\varrho \boldsymbol{u} \boldsymbol{u}) = -\nabla \rho + \nabla \cdot \left[\eta(\phi) \left(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T \right) \right] + \underbrace{\mu_{\phi} \nabla \phi}_{\text{Capillary force } \boldsymbol{F}_s} + \underbrace{\varrho \boldsymbol{g}}_{\text{Buoyancy}} \tag{4b}$$

$$\boldsymbol{F}_s \text{ involves } \sigma, \kappa, \boldsymbol{n} \rightarrow \text{Appendix}$$

CEA – September 27th, 2023

19/27

CCC2 3D simulations with the HPC code LBM_Saclay

Main features of LBM_Saclay

• Multi-architecture HPC

- multi-CPUs/GPUs
- Kokkos (//intra-node OpenMP/Cuda)
- MPI (domain decomposition)
- 2D/3D Lattice Boltzmann Methods (LBM)

Documentation: Developpers' guide GitLab, PhD and presentations

Programmers: P. KESTENER, W. VERDIER, T. BOUTIN, E. STAVROPOULOS,

- C. Méjanès, T. Duez, H. Keraudren,
- C. Elharti, A. Cartalade + interns M2

Jean-Zay (V100)

Topaze (A100)

20/27

Cea List of verifications using ϕ^{AC} -model

Fluid-Fluid interface

Phenomena	Equations	LBM_Saclay	Who	Illustrations	Date
Diffusion couple	ϕ^{AC} +2C	\checkmark	PhD Méjanès	See poster	2022
Double-Poiseuille Laplace law	ϕ^{AC} +NS		PhD Méjanès	See poster	2022
Rayleigh-Taylor instab Splashing droplet	ϕ^{AC} +NS	V	Théo Duez	Next slide Other pres	2023
Film boiling	ϕ^{AC} +NS+T		$PhD\ \mathrm{Verdier}$	Other pres	2020
Ostwald ripening	ϕ^{AC} +NS+2C	\checkmark	$PhD\ \mathrm{Verdier}$	Next slide	2022

Fluid-Solid interface

Phenomena	Equations	LBM_Saclay	Who	Illustrations	Date
Crystal growth	$\phi^{AC} + T + C$	\checkmark	PhD Younsi		2015
Dissolution process	$\phi^{AC} + C$	\checkmark	$PhD\;Boutin$	► Appendix	2021
Maturation of gels	ϕ^{AC} +2C	\checkmark	$PhD\;Boutin$	Other pres	2022

222 3D verification of two-phase flows

Classical test case of Rayleigh-Taylor instability

22/27

Ostwald ripening with sedimentation

from W. VERDIER (PhD, 2022)

Setup of simulation

- Initial conditions
 - For φ(x,0): ~2000 droplets of radius ⟨R⟩
 For c(x,0)
 - Supersaturation imposed in the matrix
 - Equilibrium in the droplets

$$\boldsymbol{c}(\boldsymbol{x},0) = \begin{cases} (1-\delta)\boldsymbol{c}_0^{eq} + \delta \boldsymbol{c}_1^{eq} & \text{if } \phi < 1/2 \\ \boldsymbol{c}_1^{eq} & \text{if } \phi \ge 1/2 \end{cases}$$

with
$$\delta = \frac{s^{eq} - s^{ini}}{1 - s^{ini}}, \ s^{eq} = \frac{\left| \boldsymbol{c}_0^{eq} - \boldsymbol{C}_0^{glass} \right|}{\left| \boldsymbol{c}_0^{eq} - \boldsymbol{c}_1^{eq} \right|}$$

Gravity + capillary forces

Simulation on Topaze-A100 Mesh $2048 \times 512 \times 512$ nodes 2.368.000 time-iter $t(\times 10^5) = 0$ 3.68 10.72 Video 64 GPUs

CEA – September 27th, 2023

23/27

Diffusion effect

Characteristic times

O Diffusion

$$t_{diff} = rac{L}{2D}$$

In Flow

$$t_{flow} = \sqrt{rac{L}{2g}}$$

- L is the domain width
- D diffusion coeff

g gravity

24/27

What next ?

25/27 CEA - September 27th, 2023

Ceal Experimental device (LDPV): furnace + camera

26/27

Work in progress and perspectives

Work In progress

- Mathematical model improvement
 - Add the thermo of $SiO_2-Na_2O-MoO_3-B_2O_3$ (quaternary)
 - Add a new transport equation in LBM_Saclay
- ② Experiments
 - Observations and measures for ternary glass
 - Data post-processing for coalescence kinetics

More general perspectives for ϕ -model

- Introduce the chemical reactions
- Extend to "three-phase/multi-components" Video

Perspectives: converge both

Thank you for watching

APPENDICES

Pros and cons of using phase-field modeling

▶ Return

Pros

- **1** A unique eulerian mesh is used for tracking the interface
- ② Can simulate complex topologies (spinodal decomposition, crystal growth, ...)
- S Coalescence can be simulated without additional model
- O Possible generalization for multi-phase and multi-components

Cons

- **0** Diffuse interface width W, coupling param λ , and surface tension σ
- **2** Requires many parameters $(c_{\ell_0}^{eq}, c_{\ell_1}^{eq}, \overline{\mu}^{eq}, D_{\ell_0}, D_{\ell_1}, \eta_{\ell_0}, \eta_{\ell_1}, \rho_{\ell_0}, \rho_{\ell_1})$ and more for multi-components
- Interpote PDEs can be complex and their physical meaning are lost
- Require performing "asymptotic expansions"

Ceal Computational times on GPU vs CPU • LBM_saclay

P. KESTENER (2018)

3D transport (without MPI)

Perfs on 2 optimisations CSoA and CSoA2 on Intel KNL (CSoA = Cluster of Structure of Array)

Euler-Lagrange equation and chemical potential

Minimization of functional (see principle of least action)

$$\mathscr{F}[\phi] = \int_V \mathcal{F}(\phi, oldsymbol{
abla}\phi) dV$$

Application of δ operator (variational derivative)

$$\delta \mathscr{F}[\phi] = \int_{V} \left[\frac{\partial \mathcal{F}}{\partial \phi} - \underbrace{\partial_{\alpha} \left(\frac{\partial \mathcal{F}}{\partial (\partial_{\alpha} \phi)} \right)}_{\text{Einstein convention}} \right] \delta \phi dV = 0 \quad (6)$$

We obtain the Euler-Lagrange equation:

$$rac{\partial \mathcal{F}}{\partial \phi} - oldsymbol{
abla} \cdot \left(rac{\partial \mathcal{F}}{\partial (oldsymbol{
abla} \phi)}
ight) = 0$$

Application $\mathcal{F} = H \underbrace{\phi^2 (1 - \phi)^2}_{-2} + \underbrace{\zeta}_2 (\nabla \phi)^2$. g1(φ) (Euler-Lagrange eq.) $Hg_1'(\phi) - \zeta \nabla \cdot (\nabla \phi) = 0$ g'_1 derivative wrt ϕ **Chemical potential** $\mu_{\phi} = \delta \mathcal{F} / \delta \phi$ Conjugate variable (intensive) of composition (extensive) $\mu_{\phi} = \frac{\partial \mathcal{F}}{\partial \phi} - \boldsymbol{\nabla} \cdot \left(\frac{\partial \mathcal{F}}{\partial (\boldsymbol{\nabla} \phi)} \right)$ $= Hg_1'(\phi) - \zeta \nabla^2 \phi$

Modeling phase separation in the melt: thermodynamics, fluid flow and HPC simulations

(5)

(7)

Alternative forms of double-wells Return

For $g_1(\phi)$ the two minima are $\phi_A=0, \ \phi_B=1$ and $g_1(\phi_A)=g_1(\phi_B)=0$

33/27 CEA - September 27th, 2023

C22 Thermodynamics of binary mixtures • Return

34/27

Interpretation of the capillary force • Return

From BRACKBILL et al, JCP (1992) & JACQMIN JCP (1999)

 F_s contains σ and κ and $n = \nabla \phi / |\nabla \phi|$

 $\boldsymbol{F}_{s} = \mu_{\phi} \boldsymbol{\nabla} \phi = -\delta_{d} \sigma \kappa \boldsymbol{n}$

Demo using Eq. for μ_{d} $\boldsymbol{F}_{s} = \mu_{\phi} \boldsymbol{\nabla} \phi = \begin{bmatrix} 4 & \mathcal{H} & \phi(\phi - 1)(\phi - 1/2) - & \zeta & \boldsymbol{\nabla}^{2} \phi \end{bmatrix} \boldsymbol{\nabla} \phi$ Eq. (8) $=-rac{3}{2}W\sigma\left[\Delta\phi-rac{16}{W^2}\phi(1-\phi)(1-2\phi)
ight]oldsymbol{
abla}\phi$ $\kappa |\nabla \phi| \text{ Eq } (10)$ $=-\frac{3}{2}W\sigma\kappa\left|\nabla\phi\right|\nabla\phi$ $= -\delta_d \sigma \kappa \boldsymbol{n}$ with $\delta_d = \frac{3}{2} W |\boldsymbol{\nabla} \phi|^2$

We can check that

$$\zeta = \frac{3}{2}W\sigma \tag{8}$$
$$H = 12\frac{\sigma}{W} \tag{9}$$

Curvature term $\kappa |\nabla \phi| = (\nabla \cdot \mathbf{n}) |\nabla \phi|$ $= \nabla \cdot (|\nabla \phi| \mathbf{n}) - \mathbf{n} \cdot \nabla |\nabla \phi|$ $= \nabla \cdot \left(|\nabla \phi| \frac{\nabla \phi}{|\nabla \phi|} \right) - \mathbf{n} \cdot \nabla |\nabla \phi|$ $= \nabla^2 \phi - \frac{16}{W^2} \phi (1 - \phi) (1 - 2\phi) \quad (10)$

C22 Initial conditions of Cahn-Hilliard model

Initial conditions: r random number (uniform distrib): $0 \le r \le 1$

Nucleation-growth

$$\phi(\mathbf{x}, \mathbf{0}) = \begin{cases} 0.2 & \text{for 97\% of nodes} \\ \frac{(9+r)}{10} & \text{for 3\%} \end{cases}$$

• Spinodal decomposition

 $\phi(x,0) = r$, for all nodes

Demixing

$$\phi(\mathbf{x}, 0) = \begin{cases} \frac{3}{10}r & \text{for 90\% of nodes} \\ \frac{9+r}{10} & \text{for 10\%} \end{cases}$$

▶ Return

The positions of 10% nodes $x_g = (x_g, y_g)$ follow a gaussian distribution

Simulations of spinodal decomposition CQA▶ Return

CEA - September 27th, 2023

« ϕ -models+LBM» 1/2: PhD (part a)

Methodology

Verifications LBM_Saclay: dissolution • Return

Analytical solutions

Compositions c_s and c_l

$$\begin{split} c_s^{as}(x, t) &= c_s^{\infty} + (c_s^{co} - c_s^{\infty}) \frac{\text{erfc}\left[-x/2\sqrt{D_s t}\right]}{\text{erfc}\left[-\alpha/2\sqrt{D_s}\right]} \\ c_l^{as}(x, t) &= c_l^{\infty} + (c_l^{co} - c_l^{\infty}) \frac{\text{erfc}\left[x/2\sqrt{D_l t}\right]}{\text{erfc}\left[\alpha/2\sqrt{D_l}\right]} \end{split}$$

Interface positionParameters $x_i(t) = \alpha \sqrt{t}$ $D_s = 0.9$ $m_s = 0.2$ with α computed with
transcendental eq: $D_l = 1$ $m_l = 0.1$ $\alpha = 0.184841$ $c_s^{\infty} = 0.4$ $\Delta \overline{t}^{min} = 0.04$

All details and other validation in doi

Comparisons with LBM_saclay Compositions *c*_s and *c*_l

40/27

C22 Dimensionless numbers for RT instability

▶ Return

CEA – September 27th, 2023

41/27

Cea Conclusion and perspectives: towards 3 phases Return

Nomenclature : ^{NS} =Navier-Stokes ^{CH} =Cahn-Hilliard ^{AC} =Allen-Cahn ^{CAC} =Conservative Allen-Cahn							
Phenomenology	Taken into account via					Currently neglected	
1 phase	Τ	С	NS	ϕ	Nb comp	Examples	
☑ Thermics advective & diffusive	V						Radiation
Transport advective & diffusive		V					\geq 4 components
Flows (incomp, lamin, viscous)			V				Non-newtonian fluids
2 phases						Fluid - Interf - Solid	
☑ Phase change (liquid/solid)	V	V	V	AC	2	Crystal growth	Big Lewis nb
Dissolution/precipitation		V	\checkmark	AC	3	Dissolution solid phase	NS coupling
Interface adsorption		\checkmark	\checkmark	AC		Porous media retention	To be done
						Fluid1 - Interf - Fluid2	
Demixing (phase separation)	\checkmark	V	V	СН	2	Spinodal decomp	T coupling
🗹 Coalescence & break-up	\checkmark	\checkmark	V	СН	2	Rising bubbles	T coupling
🗹 Instabilities	\checkmark	V	V	CAC	2	Rayleigh-Taylor	T coupling
🗹 Phase change (liquid/gas)	V	\checkmark	V	CAC	1	Film boiling	Big density ratios
Exchange through interface	\checkmark	V	V	AC	3	Ostwald ripening	T coupling
Interface adsorption		\checkmark	\checkmark	СН	1	Surfactant	NS Coupling
3 phases and more							
☑ 2 immisc fluids + solid						2 liquids + SiO_2	To explore
						Unsaturated porous media	
☑ 3 immisc tluids		\checkmark	\checkmark			3 liquids	In progress

CEA - September 27th, 2023

42/27