Aqueous dissolution rate of nuclear waste glasses as a function of environmental parameters

Yaohiro INAGAKI Kyushu University Fukuoka, Japan

3rd Summer School on nuclear and industrial glasses for energy transition 3rd Sumglass 2023, in Nimes, September 25-29, 2023

This work was partly supported by JSPS and NUMO, Japan

Micro-Channel as a New Tool to Investigate Glass Dissolution Kinetics

2nd SumGLASS 2013

Yaohiro INAGAKI Kyushu University Fukuoka, Japan

2nd International Summer School on Nuclear Glass Wasteform SumGLASS 2013, at the site of Pont du Gard, September 26, 2013

Need for evaluation of glass dissolution kinetics

Assessment of HLW glass performance in long-term geological disposal with reliability requires;

- (1) Reliable modeling based on scientific principles with sound understanding of reaction mechanism.
- (2) Parameterization of mechanistic models to determine glass dissol. (alteration) rate as a function of environmental parameters.

Dissolution rate = function (C_i, pH, temp, time, ...)

"Kinetic evaluation"= evaluation of reaction rate as a function of parameters based on reaction mechanism

Need for precise measurement of dissolution rate

Evaluation of Glass Dissolution Kinetics

Dissolution rate = function (C_i, pH, temp, time,....)

- Sound understanding of reaction mechanism
- Parameterization of mechanistic models

Only a few data on glass dissolution rate available to the kinetic evaluation

Need for much more experimental data on glass dissolution rate with mechanism measured precisely, consistently, systematically as a function of environmental parameters

Test methods for measuring dissolution rate

Standard Test Methods for Durability of HLW glass

- MCC-1: Static leach test
- MCC-2: Static, High-Temperature leach test
- MCC-3: Agitated Powder leach test
- MCC-4: Low-flow-rate leach test
- MCC-5: Soxhlet leach test
- PCT: Product consistency test
- SPFT: Single-Pass Flow-Through test
- VHT, ASTM, ISO, etc.

Unsuitable for measurement of dissolution rate as a function of various environmental parameters

Types of test methods for measuring dissolution rate

"Flow-through test" is suitable for measurement of dissolution rate as a function of environmental parameters, however, we should improve / develop test method for precise measurement.

Features of Micro-Channel Flow-Through test method

Environmental parameters under disposal conditions

Modeling HLW glass performance in geological disposal requires

"Evaluation of dissolution kinetics under disposal conditions".

Major environmental parameters to be considered

- Temp : a fundamental parameter of kinetics, varies with the site & period.
- pH : affects glass dissolution rate with mechanism, and varies with disposal site and period.
- Si : a major glass constituent, major element dissolved in ground water affecting glass dissolution rate, and the concentration varies with the site and period.
- # Reaction time: Form & growth of surface alteration layers

"Reliable & precise data of glass dissolution as a function of Temp, pH and Si concentration."

Initial dissolution rate, r₀, as a function of pH & temp

Definition of glass dissolution rate

Normalized dissolution rate of element *i*

$$NR_i [g/m^2/d] \equiv \frac{dNL_i}{dt} = \frac{C_i}{\Delta t} \frac{1}{f_i} \frac{V}{S}$$

- C_i : Conc. of element *i* in output solution at each sampling
- Δt : Each sampling period
- f_i : Mass fraction of element *i* in original glass
- $_{V}\,$: Output solution volume at each sampling
- *S* : Geometric glass surface area in contact with solution

Glass dissolution rate, r

 $r \equiv NR_{Si}$ [g/m²/d]

Initial dissolution rate, r_0 , in 1st-order dissolution rate law

$$r = r_{\theta} (1 - Q/K) + r_{residual} = r_{\theta} (1 - C_{Si}/C_{sat}) + r_{residual}$$
$$r_{\theta} \equiv NR_{Si} \text{ at } C_{Si} \simeq 0$$

Glass specimens used for MCFT test

ISG: International Simple Glass

ISG	SiO ₂	B ₂ O ₃	Na ₂ O	AI_2O_3	CaO	ZrO ₂	Others
wt%	56.2	17.3	12.2	6.1	5.0	3.3	-

P0798: Japanese reference glass

P0798*	SiO ₂	B_2O_3	Na ₂ O	AI_2O_3	CaO	ZrO ₂	Others**
wt%	46.6	14.2	10.0	5.0	3.0	1.5	19.7

*P0798 has a composition *close to French SON68* **Others: Li₂O, ZnO, Fe₂O₃, MoO₃, CeO₂, Nd₂O₃, Cs₂O, etc., total 28 elements

Test results: Initial dissolution rate, r₀ (pH, temp)

Test results: Initial dissolution rate, r₀ (pH, temp)

Glass dissolution rate as a function of C_{Si}: Test

Test method: Isotopic ratio of Si used for the test

Isotopic ratio of natural Si and Si-29 enriched SiO ₂ [at %]				
	Si-28	Si-29	Si-30	
Natural Si	92.22	4.69	3.09	
Si-29 enriched SiO ₂ (Isoflex USA)	0.14	99.21	0.65	

Isotopic ratio of Si for glass and test solution [at %]

	Si-28	Si-29
Glass (P0798, ISG) (Natural Si)	92.22	4.69
Test solution containing Si (Si-29 enriched)	0.14	99.21

Concentration of Si-28 dissolved from glass into solution can be measured to determine the glass dissolution rate.

Test results: Glass dissolution rate, r (C_{Si})

Test results: Glass dissolution rate, r (C_{Si}) at pH9

Glass dissolution rate at pH9:

- Decreases drastically with C_{si}.
- Far from the first order rate law of SiO₂(am).
- Near that of SiO₂ (chalcedony).
- But the shape differs from the first order rate law.

- suggests

- Not controlled by a simple surface reaction of SiO₂,
- Formation of surface alteration layer can affect the dissolution rate even in the early stage of dissolution.

Test results: Glass dissolution rate, r (C_{Si}) at pH7

Glass dissolution rate at pH7:

- Similar behavior as at pH9.
- Decreases drastically with C_{si}.
- Far from the first order rate law of SiO₂(am).
- The shape differs from the first order rate law.

- suggests

- Not controlled by a simple surface reaction,
- Formation of surface alteration layer can affect the dissolution rate even in the early stage of dissolution.

Test results: Glass dissolution rate, r (C_{Si}) at pH4

Test results: Glass dissolution rate, r (C_{Si}, pH)

Test results: Effect of glass type on r (C_{Si}) at pH4

Re-test results: Dissolution rate of P0798, r (C_{si}) at pH4

At pH4,

- Glass dissolution rate for P0798 increases with the Si concentration.
- How is the mechanism to explain the increase in r with C_{si}?

Test results: Effect of C_{si} on r (t) at pH9, 90°C

At [Si] = 50ppm, r decreases with time after 30days.
Effects of formation & growth of protective surface layer ?

SEM-EDX Analysis of altered surface layers($C_{Si} = 0$)

In case of [Si] = 0ppm

Insoluble elements, such as Fe, Zn, concentrated in the layers \rightarrow Layers rich in soluble elements form to be not protective

SEM-EDX Analysis of altered surface layers (C_{Si} = 50ppm)

Summary, Conclusions or Proposal ? (1)

- An assessment of the long-term waste glass performance requires reliable modeling of the glass dissolution rate based on scientific principles.
- For the reliable modeling, we need reliable evaluation of the glass dissolution kinetics.
- The only way to complete the reliable kinetic evaluation is a high-level integration of experimental & simulation studies with consistency.
- The experimental study should provide the precise, consistent & systematic data on glass dissolution rate as a function of environmental parameters for the reliable kinetic evaluation.

Summary, Conclusions or Proposal ? (2)

- We measured the glass dissolution rate as a function of environmental parameters, and the results show followings,
- The dissolution rate changes depending on environmental parameters complicatedly rather than we had expected.
- The dissolution rate with mechanism is suggested to be affected by types & properties of the alteration layers, which can change sensitively by environmental parameters.
- Consequently, we need much more experimental data on the glass dissolution rate & alteration layers measured precisely, consistently & systematically as a function of environmental parameters for the reliable kinetic evaluation.

Extra Files

Test results: Effects of C_{si} on Boron dissolution at pH9

Test results: Effects of C_{si} on Boron dissolution at pH4

Test results: Effect of temp on r (C_{Si}) at pH9

The dissolution mechanism may change by temp at pH9 ?

Test results: Initial dissolution rate, r₀ (pH, temp)

