

Zirconia Crystallization: A View from Different Tools

I. Peterson¹, Y. Shi¹, Y. Chen², K. An², J. Wright¹, S. Halstead¹, B. Wheaton¹, G. Moore¹, J. Bussey³, J. McCloy³, M. Zhang⁴

¹ Corning Research and Development Corporation, Corning, New York, USA

²Neutron Scattering Division, Spallation Neutron Source, Oak Ridge National Laborator Oak Ridge, Tennessee, USA

³ Washington State University, Pullman, Washington, USA

⁴ GlobalFoundries, Albany, New York, USA

Crystallization can occur along a complex thermal path

CORNING How can non-isothermal crystallization be measured and described?

Neutron diffraction used for in-situ crystallization experiments

Oak Ridge National Laboratory Spallation Neutron Source

- VULCAN Beamline (BL-7)
- 30 Hz Chopper Speed
- -2.88 Å Bandwidth, 2.40 Å Center Wavelength
- -4mm Horizontal Beam Aperture, 10mm Vertical Beam Aperture
- -5mm Collimators only neutrons from the sample are detected
- Controlled atmosphere furnace (1500°C max)

Experiments performed under General User Proposal

Advantages of in-situ neutron diffraction on Vulcan beamline

- Larger penetration depth of neutrons compared to x-rays
- Sample surface : volume ratio reduces surface effects
- Beam focused inside the sample to measure bulk crystallization
- Much faster signal detection better time resolution
- Larger beam size, moveable detection location
- Higher temperature capability

Zirconia-rich model glass designed for measurements

Oxide	Wt %
SiO ₂	55.7
Al_2O_3	15.5
Na ₂ O	13.5
MgO	4.6
SnO ₂	0.4
ZrO ₂	10.0

Composition

Amorphous after melting at 1600°C

Two theta angle, degrees

Neutron diffraction experiment

• One 5-gram bar of glass was placed into a MgO crucible at room temperature

Zirconia crystallized fast and then dissolved during heating

Crystallization kinetics were faster than the 20°C/min heating rate Dissolution removed 80% of the crystals before the cooling started

Zirconia crystallized during cooling at 1°C/min

Can Johnson-Mehl-Avrami-Kolmogorov equation be used under non-isothermal conditions?

$$\frac{dx}{dt} = A(1-x)^n exp\left(\frac{-B}{T}\right)$$

 $x_i = \frac{Amount \ of \ species \ i \ at \ time \ t}{Maximum \ amount \ of \ species \ i}$

t = time A = reaction constant n = reaction order B or Q/R = activation energy, in units of K T = temperature, K

CORNING D.A. Pierce et al, Thermal Analysis of Waste Glass Batches: Effect of Batch Makeup on Gas-Evolving Reactions in Thermal Analysis of Micro-,Nano- and Non-Crystalline Materials, Hot Topics in Thermal Analysis and Calorimetry 9 Springer Science and Business Media Dordreacht 2013 pp 429-439

Situations when JMAK equation can be used under non-isothermal conditions

1. Nucleation rate is proportional to growth rate - unlikely

OR

2. Nucleation occurs very early in the crystallization sequence and then its rate drops to near zero Site saturation

M. Weinberg and E. Zanotto, Calculation of the Volume Fraction Crystallised in Non-isothermal Transformations, Physics and Chemistry of Glasses 30 [3] (1989)

D. Henderson , Thermal Analysis of Non-Isothermal Crystallization Kinetics in Glass-Forming Liquids, J. Non-Cryst. Solids 30 (1979) 310-315

J.Cahn, Transformation Kinetics During Continuous Cooling, Acta Met. 4(1956) 572-575 CORNING

Does site saturation occur in this system?

Isothermal heat treatments followed by microstructure examination

Microstructure evolution during isothermal experiments

Heat treatment at 900°C

30 min (first appearance) 60 min

300 min

CORNING

Burst of fast nucleation – followed by growth later

Fast nucleation followed by slower growth and coarsening

1200°C

60 min

300 min

A closer look at structure using nano-X-ray CT Data and analysis from John Bussey and John McCloy at WSU IMR

Zeiss Xradia 810 Ultra

LFOV Mode

150 nm resolution (64 nm voxels)

• 721 projections, 75s per projection

SEM image Heat treatment at 1300°C for 10 minutes CORNING

Analysis of complex dendritic growth Data and analysis from John Bussey, John McCloy at WSU IMR

- ~3 vol% phase fraction (significant segmentation error possible)
- N_v: ~ .0002 phases/µm³
- 8 primary arms
 - Secondary dendrites significant undercooling
 - 3 secondary dendrites arrayed around primary arms (120° between secondary dendrites)
 - Non 90° angles between primary stems
- Possible to export segmented 3D model of crystal for inputs into models
 CORNING

Heat treatment at 1300°C for 10 min

Literature modeling of crystal morphology with phase-field models

Calculation for a pure substance as a function of undercooling, $\mu_{0:}$

 $\mu_0 = C_p (T_0 - T_m)/L < 0$

 $\mu_0 = -0.2$ $\mu_0 = -0.25$ $\mu_0 = -0.3$

Growth morphology in literature looks similar to experimental results in this study

CORNING Cartalade A, Younsi A, Régnier É, Schuller S. Simulations of phase-field models for crystal growth and phase separation. Procedia Materials Science. (2014) Jan 1;7:72-8.

How much does the activation energy change over the crystallization range?

Crystallization exotherm peak measured using differential scanning calorimetry (DSC) at five different heating rates

- 1, 5, 10, 20 and 50°C/min
- Lowest heating rate did not give a distinct crystallization peak
- Used Kissinger's equation to see if slope changed

Worked with crystallization on heating to accommodate lab instruments

Use of Kissinger Equation to fit an activation energy

How much does the activation energy for crystallization change with temperature in our system?

 $\frac{d\ln\left(\phi\big/T_p^2\right)}{d(1/T_p)} = -\frac{E_a}{R}$

^{ϕ} is the heating rate T_p is the temperature of the exothermic crystallization peak E_a is the activation energy R is a constant 8.314 J/(mol * deg K)

R. Wellen and E. Canedo , On the Kissinger Equation and the Estimate of Activation Energies for Nonisothermal Cold Crystallization of PET, Polymer Testing 40 (2014) 33-38 CORNING

Exotherm peak temperature increases with heating rate (DSC)

Activation energy looks constant over the temperature range

CORNING Data has one activation energy in temperature range of interest

High temperature X-ray diffraction

60°C/min heating rate to target temperature, followed by isothermal hold CORNING Disks of glass were placed into the HTXRD crucible to minimize surface crystallization

High temperature X-ray diffraction

CORNING

Latency period at temperatures $\leq 1000^{\circ}$ C Crystallization during heating ramp to temperatures $\geq 1050^{\circ}$ C

What happens in the glass before crystals form?

Raman spectrometer with heating capability

Raman spectra of glasses with increasing ZrO₂ concentration

Raman results from literature

Similar spectral shifts observed with increasing Zr content by Fischeux *et al* in high zirconia aluminosilicate glasses

400-600 cm⁻¹: bending of Si-O-Si bonds.

500 cm⁻¹ shift to higher wavenumbers

Zr atoms deforming silicate network or to crystallization of ZrO₂-containing phases

850-1200 cm⁻¹: stretching modes of Si-O bonds SiO₄ tetrahedra

1080 cm⁻¹ intensity decreases while 980 cm⁻¹ increased

1080 cm⁻¹ characteristic vibration of Q³ species

980 cm⁻¹ attributed to Si-O-Zr Q³ SiO₄ units associated with one ZrO_6 octahedron Q³(Zr)

M. Ficheux et al , Structural evolution of high zirconia aluminosilicate glasses, J Non-Cryst. Solids, 539 (2020)120050 CORNING

Local environment of Zr

$[ZrO_6]$ octahedra share corners with $[(Si,AI)O_4]$ tetrahedra

Based on description in X. Lu et al, Effect of ZrO₂ on the structure and properties of soda-lime silicate glasses from molecular dynamics simulations, J Non-Cryst. Solids, 491 (2018)141-150 CORNING

High temperature Raman experiments on sample with 10 wt% ZrO₂

Heating rate 100°C/min - Spectrum taken every 100°C Hold at 900°C for 3 hrs - Spectra taken continuously every minute

High temperature Raman spectra during heating and isothermal hold

CORNING Signal from Q²Zr in glass structure drops dramatically and immediately at 900°C

Raman spectra show clustering and nucleation of ZrO₂

CORNING Raman shows nucleation of initial crystals long before they were detectable by diffraction

Raman Conclusions

- HT Raman spectroscopy (isothermal hold @ 900°C) was performed on Na₂O-MgO-Al₂O₃-SiO₂ glass with 10% ZrO₂
- A decrease in the 960 cm⁻¹ band associated with an NBO Q²-Zr (NBO associated with Zr) in glass (demonstrates the consumption of Zr to form ZrO₂ crystals)
- An increase in crystalline ZrO₂ bands @ 280, 318, 458, and 640 cm⁻¹ (both tetragonal and cubic phases were detected)
- The cubic phase appears before the tetragonal as shown by the increase in the 318 cm⁻¹ band before the increase in the 280 cm⁻¹ band
- There is a shift in the high wavenumber region to lower wavenumbers with increasing temperature until 900°C where the ZrO₂ band intensity drops
 - -This could be associated with either an expansion change (CTE) (change in bond angle and lengths) or it could be the first sign of nucleation (possibly effected by diffusion)

Conclusions

- In-situ high temperature neutron diffraction gave detailed information on crystallization of zirconia during heating and cooling
- SEM and x-ray micro-CT showed rapid nucleation followed by slower growth in a complex dendritic morphology
- This morphology looked similar to the one predicted by literature phase field modeling
- Raman spectroscopy during the latency period at 900°C revealed an immediate decrease in the Q² units associated with Zr and appearance of bond vibrations associated with crystalline zirconia structures – first cubic, then tetragonal
- DSC at a series of different heating rates showed a similar activation energy across the temperature range – probably reflecting the kinetics for growth
- This system meets the criteria for use of the JMAK kinetics equation because of site saturation