

3rd SumGlass – 09/29/2023 – Nîmes

Self-healing glassy sealant for SOFC/SOEC technology

François O. MÉAR

PhD: Daniel COILLOT (ULille), Sandra CASTANIÉ (DGA), Lionel MONTAGNE (ULille), Renaud PODOR (CEA-ICSM)

- ✓ SOFC/SOEC technology
- ✓ Glass-sealant for SOFC/SOEC technology: state of the art
- ✓ Self-healing: background definition
- Non-autonomous & autonomous self-healing concepts
- ✓ <u>Application</u>: self-healing in glassy sealant

Non-autonomous self-healing processing in viscous seal

Autonomous self-healing concept for rigid seal

✓ Conclusions

Solid Oxide Electrolysis Cell (SOEC)

Anode reaction:

 $0^{2-} \rightarrow \frac{1}{2} 0_{2} + 2 e^{-}$

Solid Oxide Fuel Cell (SOFC)

3

Glassy sealant for SOFC technology

UCC

Requirements of a SOFC/SOEC seal

Properties	Requirements
Thermal properties	 Thermal expansion coefficient at 9.5 – 12.0 × 10⁻⁶ °C⁻¹ Thermally stable ~ 5,000h for mobile applications and for ~ 50,000h for stationary applications at 650-900°C cell operating temperatures
Chemical properties	 Resistant to vaporization and compositional change in stringent oxidizing and wet reducing atmospheres at 650-900°C Limited or no reaction with other cell components
Mechanical properties	 Withstand external static and dynamic forces during transportation and operation Resistant to thermal cycling failure during start-up and shut-down of cell stacks
Electrical properties	 Electrical resistivity ≥ 10⁴ Ω.cm at operating temperature Electrical resistivity greater than 500 Ω.cm between cells and stacks at nominal stack operating condition (0.7 V at 500-700 mA/cm²)
Sealing ability	 Sealing load < 35 kPa Withstand differential pressure up to 14-35 kPa across a cell or stack Total fuel leakage < 1% for the duration of the cell life
Fabrication flexibility	- Flexible design, low processing cost, and high reliability

Advantages and disadvantages of different types of seals

Seal type	Advantages	Disadvantages
Compressive seal	Easy replacement of seals in a manufacturing cell stack Resistance to thermal cycling	Application of external load Complex design and high cost High gas leakage rate Unsuitable for mobile applications Poor stability Electrically conductive
Viscous seal	Low thermal cycle	Non-wetting with other SOFC/SOEC components Poor oxidation resistance Hydrogen embrittlement Electrically conductive
Rigid seal	 Hermetic sealing Tailoring performance by composition design High electrical resistivity Suitable for stationary and mobile applications Flexible in design and fabrication 	Brittle at low temperatures \rightarrow poor resistance to thermal cycling Chemical reaction with other cell components

Constituents evolution in glass seal

Composition evolution in glass seal

Functions of different oxide in a seal glass

Glass constituent	Oxide	Function
Network former	SiO ₂ , B ₂ O ₃	Form glass network Determine T _g and T _s Determine thermal expansion coefficient Determine adhesion/wetting with other SOFC/SOEC components
Network modifier	Li ₂ O, Na ₂ O, K ₂ O BaO, SrO, CaO, MgO	Maintain charge neutrality Create non-bridging oxygen species Modify glass properties such as T _g , T _s and thermal expansion coefficient
Intermediate	Al ₂ O ₃ , Ga ₂ O ₃	Hinder devitrification Modify glass viscosity
Additive	La_2O_3 , Nd_2O_3 , Y_2O_3 ZnO, PbO NiO, CuO, CoO, MnO Cr_2O_3 , V_2O_5 TiO ₂ , ZrO ₂ , P ₂ O ₅	Modify glass viscosity Increase thermal expansion coefficient Improve glass flowability Improve seal glass adhesion to other cell components Induce devitrification

Two important criteria for selection of a suitable glass sealant :

 \Rightarrow glass transition temperature, T_g (because of the glass must flow sufficiently to provide an adequate seal, while maintaining sufficient rigidity for mechanical integrity)

 \Rightarrow coefficient of thermal expansion, CTE (must match other cell components electrolyte and the interconnect material, to minimize thermal stresses)

Application: Self-healing in glassy sealant

Degradation of components

- Degradation of single cell
- Degradation of sealing
- Oxidation of interconnects
- Degradation of contact resistances
- Interaction between
 - Glass / interconnect
 - Interconnect / cell
 - Contact layer / interconnect
 - Contact layer / cell

Design/System specific degradation

- Formation of hot-spots
- Inhomogeneous fuel gas distribution / utilization
- Soot formation
- Degradation due to unfavorable stack integration into system
- Degradation due to unfavorable stackpreload (especially for IC-cassettes from pressed ferritic steel)
- Key points:
 long term chemical stability

 stability against crystallization, control of phase formation

 mechanical stability (prevent crack formation)

Application: Self-healing in glassy sealant

Degradation of components

- Degradation of single cell
- Degradation of sealing
- Oxidation of interconnects
- Degradation of contact resistances
- Interaction between
 - Glass / interconnect
 - Interconnect / cell
 - Contact layer / interconnect
 - Contact layer / cell

Key points:

Design/System specific degradation

- Formation of hot-spots
- Inhomogeneous fuel gas distribution / utilization
- Soot formation
- Degradation due to unfavorable stack integration into system
- Degradation due to unfavorable stackpreload (especially for IC-cassettes from pressed ferritic steel)
- long term chemical stability
- stability against crystallization, control of phase formation
- mechanical stability (prevent crack formation)

Self-healing is proposed as a solution to decrease gas leaks due to cracks

Self-healing: background

From J.P. Youngblood, MRS Bull. 2008

(a) Schematic of an intermediate stage of biological wound healing in skin(b) Demonstration of bio-inspired damage-triggered release of a microencapsulated healing agent in a polymer

Self-healing: background

From J.P. Youngblood, MRS Bull. 2008

(a) Schematic of an intermediate stage of biological wound healing in skin(b) Demonstration of bio-inspired damage-triggered release of a microencapsulated healing agent in a polymer

(i) Cracks form in the matrix wherever damage occurs.

(ii) The crack ruptures the microcapsules, releasing the healing agent into the crack plane through capillary action.

(iii) The healing agent contacts the catalyst, triggering polymerization that bonds the crack faces closed.

From S.R. White et al., Nature 2001

<u>Self-healing material</u>: material able to heal (repair) automatically and autonomously damages occurring during processing.

Thus, self-healing can be of the following two types :

→ **autonomous**: without any intervention

→ **non-autonomous**: needs human intervention / external triggering

Numerous field of applications:

- o polymers
- o composites materials for aerospace applications
- microelectronic packaging
- medical uses
- concrete or cementitious structures

Fig. 4. Self-bealing behavior of glass B indicating several stages of self-bealing of cracks introduced by the microindentation technique $(\times 400)$ magnification.

From R.N. Singh, Appl. Ceram. Techno. 2007

disappearance of damage due to the flow of the glass phase after heating at high operating temperature

From S.K. Ghosh, Self Healing Materials: Fundamentals, Design Strategies and Applications, Willey-VCH 2009

UCCS Self-healing glassy materials: concept

UCCS Self-healing glassy materials: concept

Requirements

- \rightarrow T_{Littleton} (η = 10^{7.6} Poise) = 800°C
- \rightarrow Low viscosity at 900°C
- \rightarrow No crystallization at 800°C
- → Limited interactions with other components of electrochemical systems

- \rightarrow T_g > 600°C
- \rightarrow 750°C < T_{Littleton} < 900°C
- \rightarrow TEC > 5 × 10⁻⁶ K⁻¹
- \rightarrow Limited amount of P₂O₅

Requirements

- \rightarrow T_{Littleton} (η = 10^{7.6} Poise) = 800°C
- \rightarrow Low viscosity at 900°C
- \rightarrow No crystallization at 800°C
- → Limited interactions with other components of electrochemical systems

- \rightarrow T_g > 600°C
- \rightarrow 750°C < T_{Littleton} < 900°C
- \rightarrow TEC > 5 × 10⁻⁶ K⁻¹
- \rightarrow Limited amount of P₂O₅

Molar %	SiO2	ZrO ₂	B ₂ O ₃	Al_2O_3	Ga ₂ O ₃	La ₂ O ₃	$\mathbf{Y}_2\mathbf{O}_3$	Na ₂ O	K ₂ O	CaO	BaO	ZnO	MgO	SrO	Crystallisation	T _g / °C
Vsc1	70.24	1	1.92	5.26	040	-	-	3.60	1.19	0.60	3.32	9.05	4.82	-	Yes	650
Vsc2	63.30	 0	=	-			4.99	20.72	6.81	4.45		1 3	-	().	Yes	566
Vsc3	67.46	13.34	-	87	877	1.03	 []	13.67	4.50	877	678	 13	-	(a)	No	765
Vsc4	61.39	57 0	6.14		14.34		17 7 1	13.67	4.46	1000		1.52	5	-	No	580
Vsc5	66.01	3.43	5.57	4.21		-	H	2.16	0.71	12.21	-	H	2	5.70	Yes	686

Requirements

- \rightarrow T_{Littleton} (η = 10^{7.6} Poise) = 800°C
- \rightarrow Low viscosity at 900°C
- \rightarrow No crystallization at 800°C
- → Limited interactions with other components of electrochemical systems

- \rightarrow T_g > 600°C
- \rightarrow 750°C < T_{Littleton} < 900°C
- \rightarrow TEC > 5 × 10⁻⁶ K⁻¹
- \rightarrow Limited amount of P₂O₅

ſ	Molar %	SiO2	ZrO ₂	B ₂ O ₃	Al ₂ O ₃	Ga_2O_3	La ₂ O ₃	$\mathbf{Y}_2\mathbf{O}_3$	Na ₂ O	K ₂ O	CaO	BaO	ZnO	MgO	SrO	Crystallisation	T _g / °C
	Vsc1	70.24	1 10	1.92	5.26	0 0 0	-	-	3.60	1.19	0.60	3.32	9.05	4.82	-	Yes	650
_	Vsc2	63.30	, 2	-	8.	.=:	(4.99	20.72	6.81	4.45	:=::	n a	-	(-	Yes	566
Γ	Vsc3	67.46	13.34	-	-	-	1.03	1000	13.67	4.50	-	2 71 5	-	-	-	No	765
L	Vsc4	61.39	-	6.14		14.34	-	-	13.67	4.46	-	-	-	-	-	No	580
	Vsc5	66.01	3.43	5.57	4.21			÷)	2.16	0.71	12.21			<u>8</u>	5.70	Yes	686

Requirements

- \rightarrow T_{Littleton} (η = 10^{7.6} Poise) = 800°C
- \rightarrow Low viscosity at 900°C
- \rightarrow No crystallization at 800°C
- → Limited interactions with other components of electrochemical systems

- \rightarrow T_g > 600°C
- \rightarrow 750°C < T_{Littleton} < 900°C
- \rightarrow TEC > 5 × 10⁻⁶ K⁻¹
- \rightarrow Limited amount of P₂O₅

I	Molar %	SiO2	ZrO ₂	B ₂ O ₃	Al ₂ O ₃	Ga ₂ O ₃	La ₂ O ₃	$\mathbf{Y}_2\mathbf{O}_3$	Na ₂ O	K ₂ O	CaO	BaO	ZnO	MgO	SrO	Crystallisation	T _g / °C
	Vsc1	70.24	1 10	1.92	5.26	0 0 0	-	-	3.60	1.19	0.60	3.32	9.05	4.82	-	Yes	650
	Vsc2	63.30	1 22	-	8 	-	3 13	4.99	20.72	6.81	4.45	:1	∺ a	-	-	Yes	566
Γ	Vsc3	67.46	13.34	-	-	-	1.03	-	13.67	4.50	-	-	-	-	-	No	765
L	Vsc4	61.39	-	6.14		14.34	-	-	13.67	4.46	-	-	-	-	-	No	580
_	Vsc5	66.01	3.43	5.57	4.21		-	÷	2.16	0.71	12.21	-	÷	8	5.70	Yes	686

Requirements

- \rightarrow T_{Littleton} (η = 10^{7.6} Poise) = 800°C
- \rightarrow Low viscosity at 900°C
- \rightarrow No crystallization at 800°C

<u>Objective</u> — decrease of thermal characteristics

 \rightarrow ZrO₂ substituted by SiO₂ and/or B₂O₃

Molar %	SiO ₂	ZrO ₂	B ₂ O ₃	La ₂ O ₃	Na ₂ O	K ₂ O	Crystallisation	T _g / °C	T _s / °C
Vsc3	67.46	13.34	-	1.03	13.67	4.50	No	765	854
Vsc31	64.52	7.09	10.03	0.99	13.07	4.30	No	616	675
Vsc32	69.78	7.03	4.98	0.98	12.97	4.27	No	630	692
Vsc33	74.95	6.97	-	0.97	12.87	4.23	No	610	675
Vsc34	65.96	10.14	5.13	1.01	13.36	4.40	No	668	750

 \rightarrow Is the viscosity low enough to allow the seal forming at 900°C?

 \rightarrow Heat treatment: 10h at 900°C

 \rightarrow Is the viscosity low enough to allow the seal forming at 900°C?

→ Heat treatment: 10h at 900°C

In situ observation of crack healing

In situ Observations by HT-ESEM

		Start of healing	End of healing
Vsc32 / Air	Temperature / °C	670	755
	Viscosity / Poise	11.05	8.91

UCCS

In situ observation of crack healing

In situ Observations by HT-ESEM

		Start of healing	End of healing
Vsc32 / H_2O	Temperature / °C	670	745
. 2	Viscosity / Poise	11.38	9.27

Self-healing glassy materials: concept

Self-healing glassy materials: concept

Autonomous self-healing glass matrix upon occurrence of cracks

Crack formation into the composite during \rightarrow operation

Contact of O₂ contained into atmosphere \rightarrow with some active particles leading to their oxidation

Formation of fluid oxides capable to flow \rightarrow into the crack and to fill it

Patent WO 2010/136721 A1

Autonomous self-healing glass matrix upon occurrence of cracks

Patent WO 2010/136721 A1

 $\rightarrow\,$ Formation of fluid oxides capable to flow into the crack and to fill it

Differential thermal analysis 80 \rightarrow 80 60 exo \rightarrow 60 40 Heat Flow /µV ∆m/m /% 40 \rightarrow 20 maxi oxidation start oxidation 600 400 800 200 1000 Temperature /°C

- stable at working temperature in the absence of air
- oxidize rapidly in the presence of air
- oxides must be fluid at the working temperature

In situ observation of crack healing

Autonomous self-healing glass matrix upon occurrence of cracks

2D in situ observation by environmental microscopy (at 700°C in air)

In situ observation of crack healing

Environmental microscopy (HT-ESEM)

<u>Conditions</u>: 700°C, P_{O2} = 450Pa

Isothermal treatment at 700°C in air:

 \rightarrow

oxidation of VB particles and formation of V₂O₅ and B₂O₃

3D observation by nanotomography (ID22, ESRF)

2D in situ observation by environmental microscopy (at 700°C in air)

Autonomous self-healing glass matrix upon occurrence of cracks

Ex situ observation of crack healing

X-ray nano-tomography image reconstitution of a crack throughout the material

X-ray nano-imaging (ID22NI)

Ex situ observation of crack healing

X-ray nano-tomography image reconstitution of a crack throughout the material

X-ray nano-imaging (ID22NI)

UCCS Les projets ciblés du PEPR-H2 2030 Programme et Equipements Prioritaires de Recherche sur l'Hydrogène décarboné (PEPR – H2)

CELCER-EHT : Cellules Céramiques EHT durables, performantes et bas coûts

PROTEC : Développement de cellules d'électrolyse à base de céramiques à conduction protonique

Stockage de l'hydrogène

SOLHyd : Stockage solide de l'hydrogène: nouvelles stratégies, nouveaux matériaux

HYPERTSTOCK: Stockage hyperbare de l'hydrogène: référentiel et méthodologies matériaux

Conversion de l'hydrogène

FLEXISOC: Flexibilité des cellules SOC vis-à-vis du combustible

PEMFC95: Développement d'une cellule de PEMFC capable de fonctionner durablement à 95°C

DURASYS-PAC: Durabilité et Résilience des Systèmes Piles à Combustible

PROJET CELCER-EHT	Cellules Céramiques EHT durables, performantes et bas	coût					
Coordonné par	rdonné par CEA-LITEN (Florence LEFEBVRE-JOUD)						
Moyens prévu	 Permanents : 38 chercheurs acadén ingénieurs-chercheurs CEA 13 doctorants et 18 postdoc 11 laboratoires académiques + CEA 	niques et 20					

