3rd Summer School on nuclear and industrial glasses for energy transition

Geochemical Modeling of Glass Alteration

Pierre Frugier (CEA ISEC, France)

Geochemical Modeling of Glass Alteration

Why?

- Precipitation of secondary minerals: a key process Fe silicates, Mg silicates, Ca carbonates...
- Fluid speciation is required to predict concentrations
- Transport in the fluid by diffusion/convection controls the degree of interaction between the glass and its environment.

open system Glass alteration strongly depends on its position in

Prediction of gases (CO₂, H₂) is required

3rd Summer School on nuclear and industrial glasses for energy transition, P. FRUGIER - Geochemical modeling of glass alteration

Geochemical Modeling of Glass Alteration

Why ?

Reactive Transport Codes handle complex chemical systems

3rd Summer School on nuclear and industrial glasses for energy transition, P. FRUGIER - Geochemical modeling of glass alteration

How taking into account the transport through the gel in a RT Code ?

GRAAL Equations

Kinetic parameters D (A) and k are functions of pH and T, K is a function of T

3rd Summer School on nuclear and industrial glasses for energy transition, P. FRUGIER - Geochemical modeling of glass alteration

NV VX

GRAAL : gel composition and solubility

- Gel is described with end-members
 - Each end-member has a composition
 - Each end-member has a logK(T) value
 - The global gel composition is obtained by summing each endmember
- End-members quantities are used to calculate the thickness (x) of the gel, which is then used to calculate (r₁)

[end-member] concentration divided by Surface \rightarrow thickness of the gel x \rightarrow r₁

A little bit of history

Generalized passivation equation

A diffusion coefficient is affected to each end-member

$$r_1 = \frac{r_h}{1 + \left(\sum_{1}^{n} \frac{x_i}{D_i}\right) \frac{r_h}{\frac{\pi}{2}}} \sim \frac{1}{\left(\sum_{1}^{n} \frac{x_i}{D_i}\right) \frac{2}{\pi}}$$

- Thus, there is feedback from the gel composition on the transport properties of the gel.
- Implemented in CHESS/HYTEC
- e.g. AVM10 glass

Generalized passivation equation

- Other evidence that the apparent diffusion coefficient is influenced by the gel composition?
 - Chave 2010 for Calcium
 - Thien 2012 and Frugier & Godon 2018 for Magnesium
 - Collin 2018 for Alkalis.

An exogenous ion can become part of the gel composition and significantly alter its apparent passivation coefficient by several orders of magnitude

End-members number is free

- It is possible to capture the entire chemical complexity of the gel, subject to having sufficiently precise and abundant data.
- Bounding the gel composition is required but a limited number of end-member is already efficient.
- Gel must be able to evolve accounting elements provided by the environment.

Alkali-free glass zone can be taken into account (GRAAL 2.2)

- By hypothesis it occupies the volume of the altered glass.
- It is meant to reorganize into a gel.
- It contributes to passivation like any other gel end member thanks to the generalized passivation equation.

3rd Summer School on nuclear and industrial glasses for energy transition, P. FRUGIER - Geochemical modeling of glass alteration

 $r_1 = \frac{r_h}{1 + \left(\sum_{i=1}^n \frac{x_i}{D_i}\right) \frac{r_h}{\frac{\pi}{2}}} \sim \frac{1}{\left(\sum_{i=1}^n \frac{x_i}{D_i}\right) \frac{2}{\pi}}$

GRAAL2 allows for a volume assessment, not just a quantification of matter

- Subject to certain parameters of the meso and micro scale being known
 - Molar volume of the gel
 - Volume occupied by bound water
 - Volume occupied by water in closed porosity
 - Maturation of the gel (e.g. effect of network strengtheners)
- A density threshold at which the gel becomes protective can be set
- Those GRAAL2 imput parameters can be output parameters from atomistic models
- Volume assessment allows for the reconstruction of the actual thickness of the gel and, consequently, a better estimation of the apparent diffusion coefficients.

3rd Summer School on nuclear and industrial glasses for energy transition, P. FRUGIER - Geochemical modeling of glass alteration

■ GRAAL2 comes with Python & Jupyterlab → Methodology improvement

Parameter quantification can be automated for greater objectivity

logK

Geochemical calculations showing the evolution of ionic products associated with the end member equations

```
SiAlNacj2 = 0.2231 H4(SiO4), 0.0284 Al[3+], 0.0284 Na[+], -0.1136 H[+], -0.3894 H<sub>2</sub>O
```

 $logQ = H4(SiO4)^{0.2231*} AI[3+]^{0.0284*} Na[+]^{0.0284*} H[+]^{-0.1136*} H_2O^{-0.3894}$

- > Analysis of temporal trends in ionic products
- LogK are chosen to ensure equilibrium with the solutions in which the end-members are meant to be present

Ph.D. Maxime Delcroix

■ GRAAL2 comes with Python & Jupyterlab → Methodology improvement

Parameter qualification can be automated for greater objectivity

Diffusion coefficients

- Boron not consumed in gel formation, constantly increasing at a rate depending on the diffusion coefficient through the gel.
- The experimental boron concentration is used to determine the diffusion coefficient

Ph.D. Maxime Delcroix

What is new with GRAAL2 ?

■ GRAAL2 comes with Python & Jupyterlab → Methodology improvement

- GRAAL2 comes with Python & Jupyterlab → Methodology improvement
 - Comparison with standard deviation between the experimental data and the model bundle of curves → Qualification of the model.

The root mean square error (RMSE) is used here to estimate how close the modelling results are from the experimental results.

Ph.D. Maxime Delcroix

3rd Summer School on nuclear and industrial glasses for energy transition, P. FRUGIER - Geochemical modeling of glass alteration

FP3

What is next with GRAAL2 ?

GRAAL2 comes with Python & Jupyterlab

- Python environment makes it easier for any further improvement of the model.
- The JupyterLab interface significantly speeds up the global modeling process.
- It enables the application to a growing amount of experimental data.

It allows for parameterizing the entire domain of interest.

It helps limit human errors, leverage knowledge, and facilitates teaching.

Diapositive 17

FP3 FRUGIER Pierre; 19/09/2023

Some recent applications ?

Ph.D. Maxime Delcroix

Working environment : cj2 (4-oxide glass)

molar % of oxides
65
14
17
4

cj2 glass composition

Gel = main element to be modelled

Revisiting the model's fundamental assumptions

- Number of end-members:
 - 2 end-members are sufficient to reproduce the experimental data of CJ2 glass, taking into account the precision of the data.
- End-members Composition:
 - Modeling results are "independent" of end-member composition when both are present.
- Law of mass action:
 - Can it describe disturbances and variations in elements concentrations?

+Si ∆S/V +NaCl

- Is the kinetic law of Graal functional?
 - Can a single set of modeling parameters efficiently replicate all available data?

SiAlNacj2 = 0.2231 H4(SiO4), 0.0284 Al[3+], 0.0284 Na[+], -0.1136 H[+], -0.3894 H₂O

Ph.D. Maxime Delcroix

3rd Summer School on nuclear and industrial glasses for energy transition, P. FRUGIER - Geochemical modeling of glass alteration

Si + AI + Na ⇔ End-members

Variation in solution composition

✤ Initial addition of silicon (from 1 to 3 mmol/L, 90°C, S/V = 1cm⁻¹):

3rd Summer School on nuclear and industrial glasses for energy transition, P. FRUGIER - Geochemical modeling of glass alteration

Ph.D. Maxime Delcroix

Modelling parameters

One set of parameters for modelling all experiments

Ph.D. Maxime Delcroix

cea

3rd Summer School on nuclear and industrial glasses for energy transition, P. FRUGIER - Geochemical modeling of glass alteration

Why is GRAAL* useful ? (* = as well as any model at RT codes scale)

Because it relies on

- Geochemical database
- Efficient RT codes
- A robust hypothesis : "the thicker the gel the slower the rate"
- Accessible and therefore numerous experimental data (solution analysis & characterizations)

Because it can change scale

 And be applied both to lab and geological disposal time and space scales

Because it can be parameterized

- Limited number of parameters
- Can be described across the entire domain of interest
 → Predictive modeling

Because it has proven useful

In explaining experimental data especially integral experiments.

3rd Summer School on nuclear and industrial glasses for energy transition P. FRUGIER - Geochemical modeling of glass alteration

