

3rd Summer School on nuclear and industrial glasses for energy transition

Modeling Approaches

Atomistic simulation of glass alteration using the Monte Carlo method

J.-M. DELAYE¹, S. TIWARI¹, S. GIN¹, P. FOSSATI², A. KALINICHEV³

¹CEA, DES, ISEC, DE2D, University of Montpellier, Marcoule, Bagnols sur Cèze, Montpellier F-30207, France ²CEA, DES, ISAS, DRMP, University Paris-Saclay, 91191, Gif-sur-Yvette, France ³Laboratoire SUBATECH UMR6457- Institut Mines-Télécom Atlantique, CNRS/IN2P3, Université de Nantes, France

Outline

- > Why a Monte Carlo approach to study glass alteration?
- The successive Monte Carlo approaches (1995 2020)
- > Why is a refined Monte Carlo method needed today?
- Presentation of the refined Monte Carlo method developed at CEA
- Comparison with the experiments
- Conclusions Perspectives

Why a Monte Carlo approach to study glass alteration

- Understanding the origin of the residual alteration rate is fundamental
- The gel layer formation is in direct relation with the residual alteration rate
- Monte Carlo is a tool to simulate the gel layer formation and its impact on the alteration behavior at the atomistic level

The first Monte Carlo approach

First work (M. Aertsens, Mol (Belgium), 1995 - 2000)

Application to a SiO_2 -Na₂O glass

- Main characteristics of M. Aertsens's method
 - Diamond network with a sparingly soluble element (Si) and a soluble element (Na)
 - Si and Na are randomly distributed on the sites
 - ✤ A solution is in contact with the solid
 - ✤ A probability is applied to break the Si-Si bonds (P⁺) and another is applied to reform a Si-Si bond (P⁻, redeposition)

 \equiv Si - O - Si \equiv + H₂O \rightarrow \equiv Si - OH + \equiv Si - OH

- * Released Si can freely diffuse within the solution, following a probability of diffusion $P_{diff}(>> P^+ \text{ and } P^-)$
- \clubsuit Na ions can exchange with water molecules, following the probability P_{ex} .

$$\equiv Si - O - Na + H^{+} \rightarrow \equiv Si - O - H + Na^{+}$$

<u>cea</u>

SCK•CEN, Boeretang 200,B-2400 Mol, Belgium Proceedings of the summer school Mejannes le Clap, CEA Valrho (1997)

Relation to the transition state theory

Chemical Reaction $A + B \rightarrow C^* \rightarrow D$

Forward reaction rate $R^+ \propto a_A a_B P^+$ $P^+ = \exp(-\frac{\Delta G_{AB \to C^*}}{R T})$

Backward reaction rate

$$R^- \propto a_D P^ P^- = \exp(-\frac{\Delta G_{D \to C^*}}{R T})$$

Equilibrium constant K $P^- = \frac{P^+}{K}$ $K = \exp(-\frac{\Delta G_{D \to AB}}{R T})$

$$\Delta G_{D \to AB} = \Delta G_{AB \to C} - \Delta G_{D \to C}$$

Estimation of the model parameters

Only a rough estimation is possible

- P⁺ is fitted on the initial dissolution rate of pure silica $(1g/m^2/j)$
- P^+ and P^- are related to the silica solubility in pure water (10⁻³ mole/l)
- P_{diff} is fitted to reproduce Si diffusion in water ($D_{Si} = 0.7 \ 10^{-7} \ m^2/s$)
- ✤ The exchange probability is estimated considering data in borosilicate glasses :
 - $^{\circ}$ reaction rate for the exchange = 1.74 10⁻¹¹ mol/m²/s
 - ° dissolution rate = $3.03 \ 10^{-14} \ mol/m^2/s$

$$\rightarrow \frac{P_{ex}}{P^+} = 1000$$

 \clubsuit Na and Si diffusion coefficient in water are taken equal

Main results with the first Monte Carlo approach

The system contains 1200 sites

- The Si and Na dissolution are congruent for the lowest Na content and a protective gel layer is formed at the solid – solution interface
- Dissolution becomes incongruent at higher Na content due to the formation of a percolating Na network. In this case, the Si ions dissolve in clusters.

Sodium density	Time	Average dissolution rate		Ratio of normalised	Position	n of surfac	of surface layer	
ρ	(days)	Silica (g/m² days)	Sodium (g/m² days)	dissolution rates	Water side	Glass side	Width	
0.1 0.2 0.3 0.4 0.5	730.7 22.7 1 0.2 0.04	0.021 0.13 0.38 0.99 7.6	0.0024 0.034 0.54 9.5 69	1.01 1.05 3.3 14.3 9.1	1 074 204 6 0 0	1 089 255 147 351 429	15 51 141 351 429	

<u>cea</u>

The Monte Carlo approach developed at CEA

- Development in 2000 2010
 - ✤ M. Aertsens's method has been modified:
 - ✓ Possibility to consider SiO₂-B₂O₃-Na₂O-CaO-ZrO₂ systems
 - ✓ The diffusion in solution is suppressed to limit the computational time → systems containing up to 10^6 atoms can be simulated
 - ✓ The glass dissolves atom by atom, rather than bond by bond, with probabilities that depend on the local reticulation level

A. Ledieu, PhD, Ecole Polytechnique, 2004
C. Cailleteau et al., Nat. Mater., 7 (2008) 978
M. Arab et al., J. Non-Cryst. Solids, 354 (2008) 155
C. Cailleteau et al., J. Phys. Chem. C, 115 (2011) 5846

<u>cea</u>

The Monte Carlo approach developed at CEA

- A cubic network with removed edges (to have only four coordinated vertices) is used to represent the glass
- > B^{III} and B^{IV} are introduced (but suppressing additional edges)
- NBO around the Si ions are introduced (depending on the glass composition)
- Zr is not soluble
- Periodic boundary conditions along two directions parallel to the glass – water interface

Three dissolution probabilities $(w_3, w_2 et w_1)$ to model Si dissolution based on the number of neighbouring Bridging Oxygen (3, 2 or 1)

The redeposition of Si ions can occur based on the probability: w_c * C_{Si}

Quantity of Si in solution
$$\frac{dN_{Si}}{dt} \equiv V \frac{dc_{Si}}{dt} = \sum_{i \in S(t)} (w_d(i) - w_c \times c_{Si})$$
Si solubility $c_{Si}^* = \frac{\langle w_d(i) \rangle_{i \in S(t)}}{w_c}$

Exploring the Role of Zirconium: An Exemplary Application

Experiments on 5 oxide glasses:

(61 - x)SiO₂-17B₂O₃-18Na₂O-4CaO-xZrO₂

$$(x = 0, 1, 2, 4, 8)$$

The forward alteration rate decreases when the %ZrO₂ increases

cea

	r ₀ (g/m ² /j) pH=6.9 / 8.0
0% ZrO ₂	26 / 18.7
2% ZrO ₂	4.4 / -
4% ZrO ₂	1.1 / 10.9
8% ZrO ₂	0.09 / 1.8

The gel restructuration was measured by SAXS (I(q)=q^{-u}). The maturation rate decreases when the %ZrO₂ increases

\diamond But ... the durability decreases when the %ZrO₂ increases

Exploring the Role of Zirconium: An Exemplary Application

Monte Carlo simulations using the glass compositions:

- The alteration stops for 0%, 2% and 4% ZrO₂
- \clubsuit The alteration is complete for 6% and 8% ZrO₂

$$F_{\mathrm{S,W}}(\tilde{q}) = \frac{1}{n_{\mathrm{S}}} \sum_{n=1}^{n_{\mathrm{S}}} \frac{1}{N_{\mathrm{S}}} \left\{ \left[\sum_{i=\mathrm{S or W}} \cos(\tilde{\mathbf{q}}.\mathbf{r}_{i}) \right]^{2} + \left[\sum_{i=\mathrm{S or W}} \sin(\tilde{\mathbf{q}}.\mathbf{r}_{i}) \right]^{2} \right\}$$

(61 - x)SiO₂-17B₂O₃-18Na₂O-4CaO-*x*ZrO₂ (*x* = 0, 1, 2, 4, 8)

* The SAXS spectra were calculated: the gel restructuration is slower when the $ZrO_2\%$ increases

<u>cea</u>

The PNNL Monte Carlo approach

S. Kerisit et al., Geochim. et Cosmochim. Acta, 75 (2011) 5296 S. Kerisit et al., J. Non-Cryst. Solids, 378 (2013) 273 S. Kerisit et al., J. Non-Cryst. Solids, 408 (2015) 142

- The glass composition has been completed
 - ✤ Introduction of Al (^{IV}Al) same qualitative behaviour as Si
- Boroxol rings can be considered
- ✤ No gel maturation
- Possibility to take into account precipitation of secondary phases

Focus on a specific result: Non linear effect of Al

- The B dissolution rate decreases when %Al₂O₃ increases
- The altered glass quantity is maximum for intermediate Al₂O₃ content

1) Al hardening effect : the initial B alteration rate decreases

 $0 \le x \le 15\%$

- 2) %AI \uparrow : release is slower : the formation of the gel is slower : the plateau is higher
- 3) %AI 7 : the protective layer is formed closer to the surface : the height of the plateau decreases

Why is a refined Monte Carlo method needed today?

It has not been possible to reproduce the radiation effects without considering diffusion of water in the glass

cea

40

20

1.104

 $2 \cdot 10^4$

3.104

Computer steps

4·104

5. 10⁴

A. Jan et al., J. Non-Cryst. Solids, 519 (2019) 6

A refined version of the Monte Carlo method is under development

> Initial structure: two subnetworks (solid and liquid) interpenetrate

The refined Monte Carlo method

> In the initial structure, we have:

Closed bonds

Open bonds

to introduce NBO

Non-existent bonds

to introduce B^{III} in addition to B^{IV}

NBO and B^{III} are introduced by pairs as in the previous method

New implemented mechanisms

✤ <u>Water diffusion in the solid</u>

✤ <u>Hydrolysis bond by bond</u>

- Reformation of bonds
- * Maturation of the gel \rightarrow vacancy jumps in the solid

✤ Redeposition of Si and Al at the glass-water interface

Animation prepared by K. Damodaran

Comparison between Monte Carlo calculations and experiments

Series of 6 glasses: $SiO_2 - Al_2O_3 - B_2O_3 - Na_2O$ Alteration: 90°C, pH=9, DIW, 180 days, S/V=50cm⁻¹

K. Damodaran, PhD thesis, University of Montpellier, 2022

Perspectives

> Parallelization of the Monte Carlo code (we are currently limited by the computational time)

- Investigate the mechanisms behind the formation of the reticulated zone (connexion to the release of clusters?), and the zone enriched with Si
- Study of the gel maturation

Summary

- The Monte Carlo approach: a thirty-year history
- > A refined Monte Carlo method is currently under development
- First result: the Si release rate is an important factor that impacts the alteration layer morphology

THANK YOU FOR

YOUR ATTENTION