

Cold crucible for HLW vitrification : advances in the feed and PGM behavior modelling

Emilien Sauvage^{1*}, Patrice Brun¹, Zineb Nabil¹ and Régis Didierlaurent²

¹CEA, DES, ISEC, LDPV, Univ Montpellier, Marcoule, France

²Orano

28/02/2023

*corresponding author: emilien.sauvage@cea.fr

Summary

- **1.** French radioactive waste vitrification technology presentation
- **2.** Platinum group metals particles in numerical simulation
- **3.** Feeding modelling
- **4.** Conclusion

Cold Crucible Inductive Melter

Inductive Hot Metallic Melter

Calcination – vitrification continuous process

- IHMM in operation in Orano plants of La Hague (Normandie) since 1989
- Higher temperature in CCIM leads to a higher production capacity

Melting with cold crucibles

Main principles

- Calcined HLW and glass frit are heated by direct electromagnetic induction
- The crucible is cooled by an internal water-cooling system
- The glass melt is mechanically stirred with a rotating agitator
- Further homogenization is achieved with air bubbling in the glass
- The cold crucible technology has been developed by the CEA Marcoule and is working at the Orano La Hague reprocessing plant (France) since 2010
- Mission of CEA
 - Back industrial support
 - R&D and design of more efficient crucibles for future nuclear waste
 - Modelling and simulating the full vitrification process (hence diminishing new development costs)

Glass surface in the cold crucible

SumGlass Conference 2023 Nîmes France

 \underline{e}

Production glass type with CCIM

CCIM implemented in the R7 facility for the production of 3 different types of vitrified waste canisters :

Production completed (see RGN)

N° 5 Sept-Oct 2020 p. 50-53)

CSD-B canisters

Intermediate level waste borosilicate glass for the vitrification of corrosive solutions from decommissioning and dismantling operations. (Low PGM content)

CSD-U canisters

High level waste glass-ceramic for the vitrification of legacy highly-corrosive UMo fission products from reprocessing U-Mo-Sn-Al spent fuel. (Low PGM content)

CSD-V canisters (R7T7 glass)

High level waste borosilicate glass for the vitrification of UOx fission products (ongoing PWR reprocessing activities) (**High** PGM content)

→ In total, about 1100 canisters produced with the CCIM.

Summary

- **1.** French radioactive waste vitrification technology presentation
- **2.** Platinum group metals particles in numerical simulation
- **3.** Feeding modelling
- **4.** Conclusion

Cold Crucible Inductive Melter

Inductive Hot Metallic Melter

2 - Noble metal particles (1/5)

Platinum Group Metal particle (PGM)

- In the nuclear glass, noble metal particles are present
 - Concentration depending on the waste type (0.1 to 3 %w)
 - Ruthenium dioxide (RuO₂) needles
 - Palladium Rhodium (Pd Rh) spheres
- Strong impact on the vitrification process via the physical properties of the glass :
- i. **Viscosity** \rightarrow impact on the mixing quality of the glass
- ii. **Density** \rightarrow impact on the sedimentation / settling risk
- iii. Electrical conductivity \rightarrow impact on the induction heating

2 - Noble metal particles (1/5)

SEM picture of inactive nuclear glass

Noble Metal particles effect on the viscosity

- The temperature dependence of the glass viscosity is well modeled with an VFT law
- A non Newtonian behavior of the viscosity is observed with NM particles
- Particles tend to aggregate under low shear conditions leading to an increase in apparent viscosity
- The phenomenon is reversible

Caroline Hanotin, *et al.* (**2016**), Platinum group metal particles aggregation in nuclear glass meits under the effect of temperature, **Journal of Nuclear Materials**, 477.

ce

SumGlass Conference 2023 Nîmes France

2 - Noble metal particles (1/5)

Noble Metal particles effect on the viscosity

The apparent viscosity can be modelled with Cross law

$$\underline{\eta_{Cross}}\left(T,\phi,\dot{\gamma}\right) = \eta_{\infty}\left(T,\phi\right) + \frac{\eta_{0}\left(T,\phi\right) - \eta_{\infty}\left(T,\phi\right)}{1 + \frac{\dot{\gamma}}{\dot{\gamma}_{C}(\phi)}}$$

- But this lead to very high viscosity in the process simulation
- In fact, the structuration of the particles is quite a slow phenomenon (several hundred seconds)
- A time dependent viscosity model is required to predict the real glass flow at the process scale.
 - Ongoing work

Temporal evolution of viscosity after a sudden drop in shear rate

Machado, Norma Maria *et al.* (**2022**). Influence of Platinum Group Metal particle aggregation on the rheological behavior of a glass melt. **Journal of Nuclear Materials**. 563.

2 - Noble metal particles (2/5)

Sedimentation modelling of noble metal particles in the glass during vitrification

- A one phase model has been developed for individual settling
- Cloud settling in take into account via the density of glass
- Those models are able to simulate any concentration of PGM into the furnace

Cloud settling through density of glass depending of particle concentration :

$$\rho(\underline{C}) = \rho_f (1 + \beta_p C)$$
$$\beta_p = \frac{\rho_p}{\rho_f} - 1 \approx 2.1$$

Rayleigh-Taylor instabilities

Klouzek et al.

2 - Noble metal particles (3/5)

Noble metal particles effect on electrical conductivity of the glass

- Micro-tomography X of inactive glass sample
- Simulation of electrical conduction in small parts of the sample
 - Low conductivity for the glass : 10⁰ Ω⁻¹m⁻¹
 - High conductivity for the particles : $10^6 \Omega^{-1} m^{-1}$
- Law of effective electrical conductivity function of the concentration

2 - Noble metal particles (4/5)

X Micro-tomography

- Samples of inactive glass send to the European Synchrotron Radiation Facility (ESRF, ID19)
- Voxel size of $0,16^3 \ \mu m^3$

SumGlass Conference 2023 Nîmes France

19) (19) 19)

Description

Needles : Ruthenium dioxide (*RuO*₂)

Spheres : Palladium (*Pd*)

■ Diameter of one sphere : ~ 5 µm

Volume fraction of particules in this sample : 3,5 %v (~10%w PGM)

2 - Noble metal particles (5/5)

Noble metal particle effect on electrical conductivity of the glass

- More than 200 computation boxes on real 3D particles
- Range of concentration between 0 to 20 %v
- Law of effective electrical conductivity obtained shows a percolation threshold concentration : Cp

Barba Rossa G, Grenoble University, PhD 2018

Percolation curve 10⁵ Effective conductivity (adim.) 10⁴ 10³ $\sim (C - C_p)^t$ ۹0² 10^{î~ (Cp -} Sample 1 Δ Sample 2 ∇ Sample 3 \Diamond Model 10 12 14 16 18 20 2 6 8 0 C (%)

Garboczi et al. 1995

$$\sigma = f(C, C_p, s, t)$$

> This law is used in the induction heating simulation at the industrial scale

2 - Noble metal particles

Temperature, velocity and Joule power density fields in the glass

 $U \in [0; 1] \text{ m/s}$

Coupled simulation of direct induction heating with PGM sedimentation

- Simulation of 400kg of glass. Total Joule power 180kW
- Artificially enhanced sedimentation for demonstration

Iso-contour of PGM concentration and Induced electric current in the class

Iso-contour C = 5,3 % v

Useful tool to predict sedimentation areas and their consequences on the heating process

 $p_I \in [0; 4] \text{ MW/m}^3$

T ∈ [1200; 1480] K

V

Summary

- **1.** French radioactive waste vitrification technology presentation
- **2.** Platinum group metals particles in numerical simulation
- **3.** Feeding modelling
- **4.** Conclusion

Cold Crucible Inductive Melter

Inductive Hot Metallic Melter

3 – Feed modelisation (1/3)

Simulation of chemical reactions during vitrification process

- Idea : adapt the work of Hrma Pokorny Dixon et al.* (PNNL DOE) on the cold-cap reaction modelisation
- TGA DSC measurements & Identification of chemical reaction at various heating rates : 10 to 40°C/min

Generalization : advection term

$$\rho \frac{\partial \varphi}{\partial t} + \frac{\partial}{\partial x_i} \left(\rho u_i \varphi - \Gamma \frac{\partial \varphi}{\partial x_i} \right) = \rho A \left(1 - \varphi \right)^n e^{-\frac{E}{RT}}$$

Coupling with temperature

$$\rho \frac{C_p \partial T}{\partial t} + \frac{\partial}{\partial x_i} \left(\rho u_i C_p T - \lambda \frac{\partial T}{\partial x_i} \right) = -\Delta H \rho A (1 - \varphi)^n e^{-\frac{E}{RT}}$$

Solving in CFD software

* J. Chun, D. Pierce, R. Pokorny and P. Hrma : Cold-cap reactions in vitrification of nuclear waste glass, Thermochimica Acta, 559 (2013) 32-39

3 – Feed modelisation (2/3)

Example of the feed modelisation at small scale

Small furnace experiment

Platinum crucible (~ 1 Liter) heated by Joule effect

Stirer (Pt)

(1) Camera; (2) Stirer; (3) Thermocouple (Tc1); (4) Thermocouple (Tc2)

SumGlass Conference 2023 Nîmes France

Modelisation (ANSYS Design Modeler/ Meshing)

- Phenomena taken into account :
 - Glass flow
 - Joule effect in the crucible
 - Mechanical stirring
 - Radiation heat losses

3 – Feed modelisation (3/3)

Validation of the feed modelisation at small scale

Temperature TC1 after feeding 2.5 0.0 -2.5 ∆ T (°C) -5.0 -7.5 -10.0 Essai n°1 Evolution of the reacting raw Essai n°2 -12.5 Simulation materials during time -15.0^L 25 50 100 125 150 175 200 75 Temps (s)

SumGlass Conference 2023 Nîmes France

cea

Temps = 0[s]

4 – Conclusion

- Cold crucible technology furnace is used for vitrification of HLW in La Hague plant since 2010 for the production of nuclear glass with up to 3%w of PGM
- The development of the CCIM carried out by the CEA Marcoule has required the numerical modelling of various physical phenomena
- PGM are of great concern due to their impact of the physical properties of the glass (viscosity, electrical conductivity, etc)
- Mathematical models helped to understand and control sedimentation phenomena in the furnace
- Simulation of feeding quantifies the kinetics of chemicals reactions taking place at the top of the glass

Thank you for your attention

CEA MARCOULE

BP17171 30207 Bagnols-sur Cèze Cedex France émilien.sauvage@cea.fr + 33 4 66 79 18 19

